Post Closure Groundwater and Surface Water Monitoring Report, Spring 2016 Yankee Nuclear Power Station

Prepared for:

Yankee Atomic Electric Company Yankee Nuclear Power Station 49 Yankee Road Rowe, Massachusetts

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc. 511 Congress Street
Portland, Maine 04101

April 27, 2016

Project Number 3617147318

Post Closure Groundwater and Surface Water Monitoring Report, Spring 2016 Yankee Nuclear Power Station

Prepared for:

Yankee Atomic Electric Company Yankee Nuclear Power Station 49 Yankee Road Rowe, Massachusetts

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc. 511 Congress Street
Portland, Maine 04101

April 27, 2016

Project Number 3617147318

Eugene Shephard

Associate Project Manager

Tom Longley

Senior Geologist

TABLE OF CONTENTS

1.0	INTRODUCTION		1
2.0			
3.0		Χ	
4.0	FINDINGS		3
4.1	RADIOLOGIC	AL PARAMETERS	3
4.2		ARAMETERS	
5.0	CONCLUSIONS.		5
6.0	RECOMMENDA	ΓΙΟΝS	5
7.0			
8.0	REFERENCES		7
APPEN	DIX A M	assDEP LETTER TO YNPS DATED FEBRUARY 23, 2016	
APPEN	DIX B FI	ELD DATA RECORDS – MARCH 2016	
APPEN	DIX C Al	NALYTICAL DATA – MARCH 2016	
	APPENDIX C-1 APPENDIX C-2 APPENDIX C-3		

List of Figures

Figure 1 Sample Locations

List of Tables

Table 1	Groundwater and Surface Water Monitoring Program Summary
Table 2	Field Parameter Measurements
Table 3	Summary of Tritium Analytical Data and Trend Analyses
Table 4	Summary of Chemical Data from SCFA Monitoring Wells
Table 5	Summary of Chemical Data for SCFA Surface Water Locations
Table 6	Monitoring Well Status Update April 2016

1.0 INTRODUCTION

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler) has been contracted by Yankee Nuclear Power Station (YNPS) to conduct the Post Closure Groundwater and Surface Water Monitoring Program at their site, located at 49 Yankee Road in Rowe, Massachusetts.

YNPS completed its decommissioning in 2007, under the oversight of the Nuclear Regulatory Commission (NRC). However, as part of the closure process, ongoing groundwater and surface water monitoring is still required under the Massachusetts Department of Environmental Protection (MassDEP). This work is to demonstrate that the groundwater is in compliance with the Massachusetts Contingency Plan (MCP) and for post closure monitoring of the Beneficial Use Determination (BUD) Area and the Southeast Construction Fill Area (SCFA). This report presents the findings from samples collected in March 2016 in support of the site closure requirements under the MCP.

2.0 BACKGROUND

Through the site closure process, a comprehensive investigation was conducted to characterize environmental conditions and to develop the conceptual site model, not only to identify source areas and impacted media, but to also describe the fate and transport of both chemicals and radionuclides in soils, groundwater, and surface water. These findings have been published in numerous reports and have achieved the appropriate regulatory approvals. The conceptual site model for groundwater at YNPS was published in the Final Groundwater Conditions Report, submitted to the NRC on February 15, 2007 (YNPS, 2007).

As part of the decommissioning project, 81 groundwater monitoring wells were installed to characterize the hydrogeology, and groundwater quality. Currently there are 15 wells that remain on site. Of these wells, five groundwater monitoring wells were sampled in March 2016 to demonstrate compliance with the MCP and to support post closure monitoring. Results are presented and discussed in the following report.

3.0 SCOPE OF WORK

Groundwater monitoring for closure under the License Termination Plan (LTP) has been completed. However, groundwater and surface water monitoring is still required to reach closure under the MassDEP and to support post closure monitoring. In keeping with this goal this program was completed in accordance with the MassDEP-approved Groundwater Monitoring Plan to Support Closure under the MCP (ERM, 2007) as modified by the MassDEP by letter dated February 23, 2016 (Appendix A), as well as the Phase II - Comprehensive Site Assessment Report (MassDEP, April 08, 2009).

On February, 23, 2016 YNPS received a letter from the MassDEP approving the Minor Modification Permit application, entitled "Proposed 2015 Revisions to the Groundwater and Surface Water Monitoring Program", for the former YNPS in Rowe, MA. The application was prepared by Ransom Consulting, Inc. (Ransom) on behalf of Yankee Atomic Electric Company (YAEC), the owner of the YNPS. The application proposed to amend the June 19, 2007 MassDEP approval of the Final Post-Closure Groundwater Monitoring Plan (the Groundwater Monitoring Plan) for the YNPS, which addressed environmental monitoring at the Beneficial Use Determination (BUD) Fill Area (the former industrial area) and the Southeast Construction Fill Area (SCFA), in accordance with MassDEP's Solid Waste Regulations at 310 CMR 19.000.

The MassDEP approved the Minor Modification permit subject to a number of conditions and requirements. These conditions and requirements were identified in the MassDEP approval letter (Appendix A) and included a list of locations to be sampled, the frequency of sampling, and for which constituents they were to be analyzed. Additionally, this modification was to be initiated during the 2016 sampling event, for which this report describes. Accordingly, the March 2016 sampling event included the sampling of five monitoring wells, three surface water locations, and one surface water seep location. A subset of sample locations were split and submitted to the Massachusetts Department of Public Health Environmental Radiation Laboratory. The sampling program is summarized in Table 1. The sampling locations are shown on Figure 1. Groundwater samples were collected in accordance with Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells (USEPA, 2010) and in accordance with Amec Foster Wheeler's Site Specific Health and Safety Plan (Amec Foster Wheeler, 2016). Field data records are presented in Appendix B, and a summary of the field data parameters is presented in Table 2.

During the field effort, locks were replaced on the monitoring wells CFW-5, CFW-6, MW-105B, and MW-107C. The lock hasp on monitoring well CFW-1 was broken and YAEC was notified to initiate repairs. Subsequent to the field sampling effort, YAEC has repaired the lock hasp on CFW-1 and a new lock has been installed.

The radiochemistry data were validated in accordance with Site procedure ES-4, Rev. 0 (YNPS, 2016). Chemical analytical data were validated in accordance with EPA Region 1, New England Validation Guidelines (USEPA, 1989 and 1996b). A summary of the data validation findings and tabulated validated data are provided in Appendix C-1 (radiological), C-2 (chemical), and C-3 (validation checklists).

4.0 FINDINGS

Groundwater samples were submitted for both radiological and chemical parameters. The results and findings from the sampling events are presented in the following subsections.

4.1 RADIOLOGICAL PARAMETERS

Radionuclides in groundwater are compared to the United States Environmental Protection Agency's (USEPA's) Maximum Contaminant Level (MCL). In additional to these criteria, data are also evaluated over time to assess if trends are decreasing, stable, or increasing. Consistent with evaluations presented in previous Annual Post Closure Groundwater and Surface Water Monitoring Reports, a change of 15 percent over previous sampling events has been used to identify trends.

Groundwater samples were collected from two monitoring wells and one surface water seep location for analysis of radionuclides in March 2016. The tritium results are presented on Table 3 with previous data to demonstrate that there continues to be a generally downward and/or stable trend in tritium concentrations. Tritium was not detected in any of the surface water locations sampled during this event.

Consistent with historical results, the highest concentration of tritium was detected at MW-107C at 6,330 picocuries per liter (pCi/L), with the next highest detection reported at monitoring well MW-105B (1,460 pCi/L). The MCL for tritium is 20,000 pCi/L. As shown on Table 3, these detections are consistent with the conceptual site model.

No other radionuclides were detected in any of the groundwater or surface water sample locations sampled during the March 2016 event.

Validated radiological data from the sampling event is provided in Appendix C-1.

4.2 CHEMICAL PARAMETERS

Groundwater chemical data are evaluated using the GW-1 groundwater standards (310 CMR 40.0974(2)) (MassDEP, 2008). For the analyses where GW-1 standards are not published, data are compared to Massachusetts MCLs or Massachusetts Secondary MCLs (SMCLs) (MassDEP, 2007). Surface water chemical data are evaluated using USEPA Ambient Water Quality Criteria (AWQC) (USEPA, 2002). For the analyses where AWQC are not published, data are compared to Massachusetts MCLs or SMCLs (MassDEP, 2007).

<u>Former Southeast Construction Fill Area.</u> Samples were collected from three groundwater monitoring wells (CFW-1, CFW-5, and CFW-6) and three surface water locations (SW-1, SW-4 and SW-5) to assess the potential environmental impacts from the Former SCFA. A summary of the sampling program is presented in Table 1.

Several metals and other naturally occurring compounds were detected in both groundwater and surface water samples; however the concentrations are consistent with background and historic data. Only iron and manganese were detected at concentrations that exceed the SMCLs. SMCLs are used to assess the aesthetic qualities of drinking water and are not health-based standards; concentrations that exceed SMCLs are not necessarily indicative of potential health risks.

The surface water samples were also analyzed for 1,4-dioxane. 1,4-dioxane was not detected in any of the surface water samples from the SCFA.

A summary of the groundwater data for wells downgradient of the SCFA is presented on Table 4. A summary of the surface water data for locations associated with the SCFA is presented in Table 5.

<u>Sherman Spring.</u> Sampling was completed at the Sherman Spring surface water location (SP-1) and samples were analyzed for VOCs, 1,4-dioxane, and total Resource Conservation and Recovery Act

(RCRA) 8 metals. Barium and 1,4-dioxane were detected below applicable criteria. Other results were reported as not detected. Validated data is included in Appendix C-2.

5.0 CONCLUSIONS

The results from the March 2016 groundwater sampling event were consistent with the approved conceptual site model. Based on the data collected during the March 2016 sampling event, tritium concentrations continue to be stable or decreasing across the site, with the highest concentration reported at MW-107C at an activity of 6,330 pCi/L compared to the MCL of 20,000 pCi/L.

No additional sampling is warranted at this time. In accordance with the Post Closure Groundwater and Surface Water Monitoring Plan, the next groundwater sampling event is scheduled for March 2021.

6.0 RECOMMENDATIONS

As the groundwater monitoring program is progressing, wells that are no longer part of the active network were recommended for closure in accordance with MassDEP Guidelines as described in previous reports. Table 6 summarizes the status of each monitoring well at the Site as of April 2016. The monitoring wells remaining at the site include five wells that are sampled as part of the long-term monitoring program (CFW-1, CFW-5, CFW-6, MW-105B, and MW-107C) as well as ten wells (MW-102A/B/C, MW-104A, MW-105A/C, MW-106A, and MW-107B/D/E), that are no longer sampled but, at the request of MassDEP, are kept active for potential future sampling events. In consultation with the MassDEP, YAEC maintenance responsibilities for the wells that will be left for possible future monitoring will be to protect from damage, and complete a visual inspection and lock replacement once every three years, which began in 2012 (MassDEP, 2011).

7.0 ACRONYMS

Amec Foster Wheeler Amec Foster Wheeler Environment & Infrastructure, Inc.

AWQC Ambient Water Quality Criteria
BUD Beneficial Use Determination
LTP License Termination Plan

Massachusetts Department of Environmental Protection

MCL Maximum Contaminant Level
MCP Massachusetts Contingency Plan

mg/L milligrams per liter

NRC Nuclear Regulatory Commission

pCi/L picocuries per liter

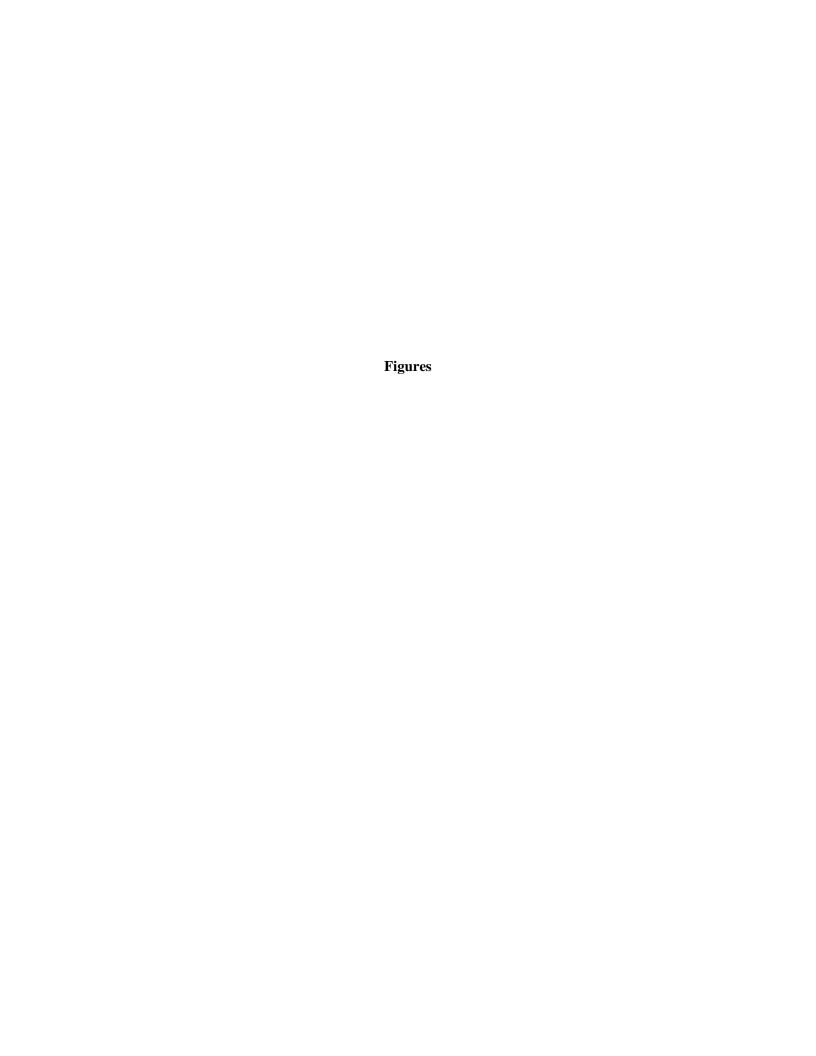
Ransom Consulting Inc.

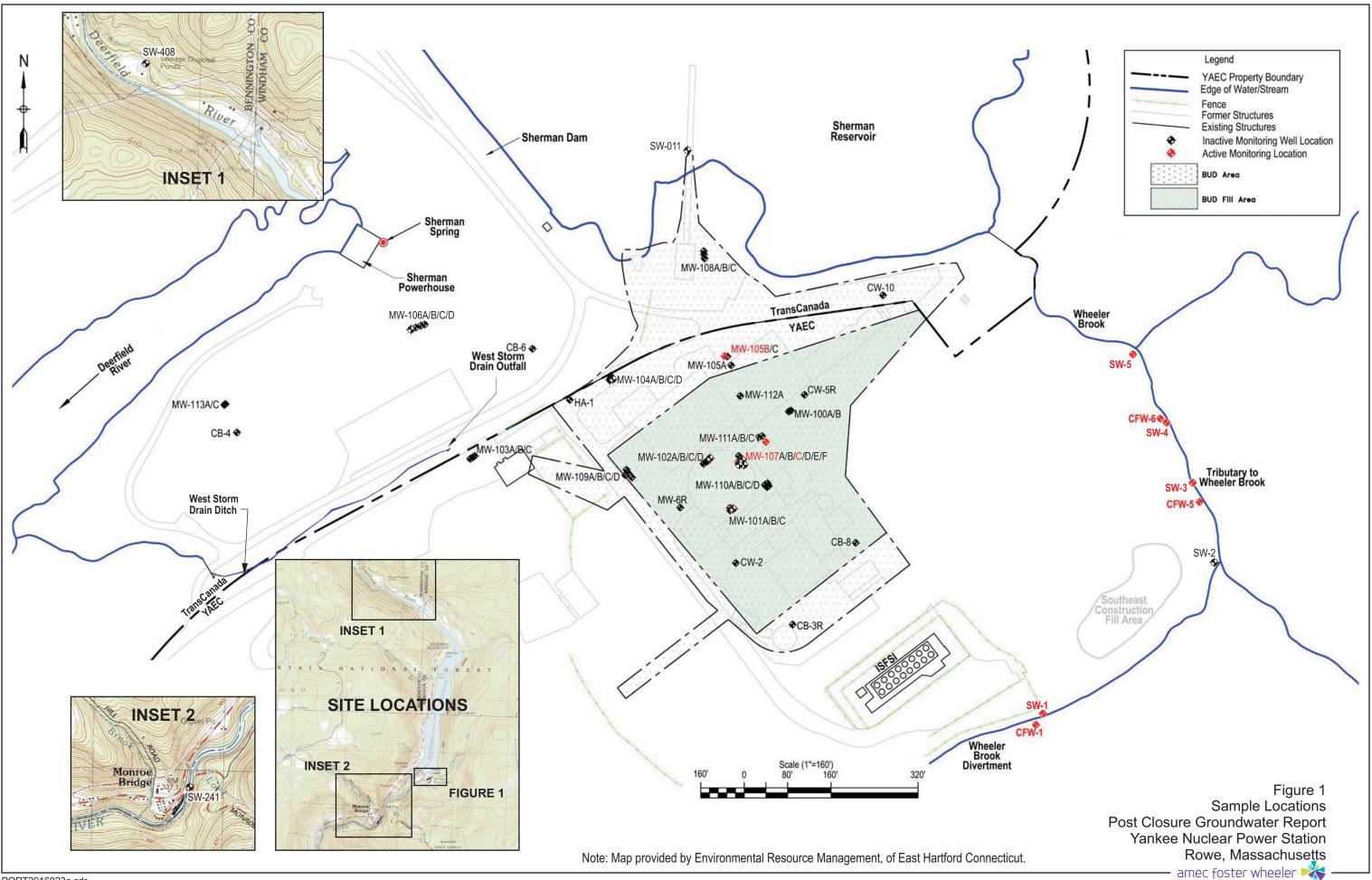
RCRA Resource Conservation and Recovery Act

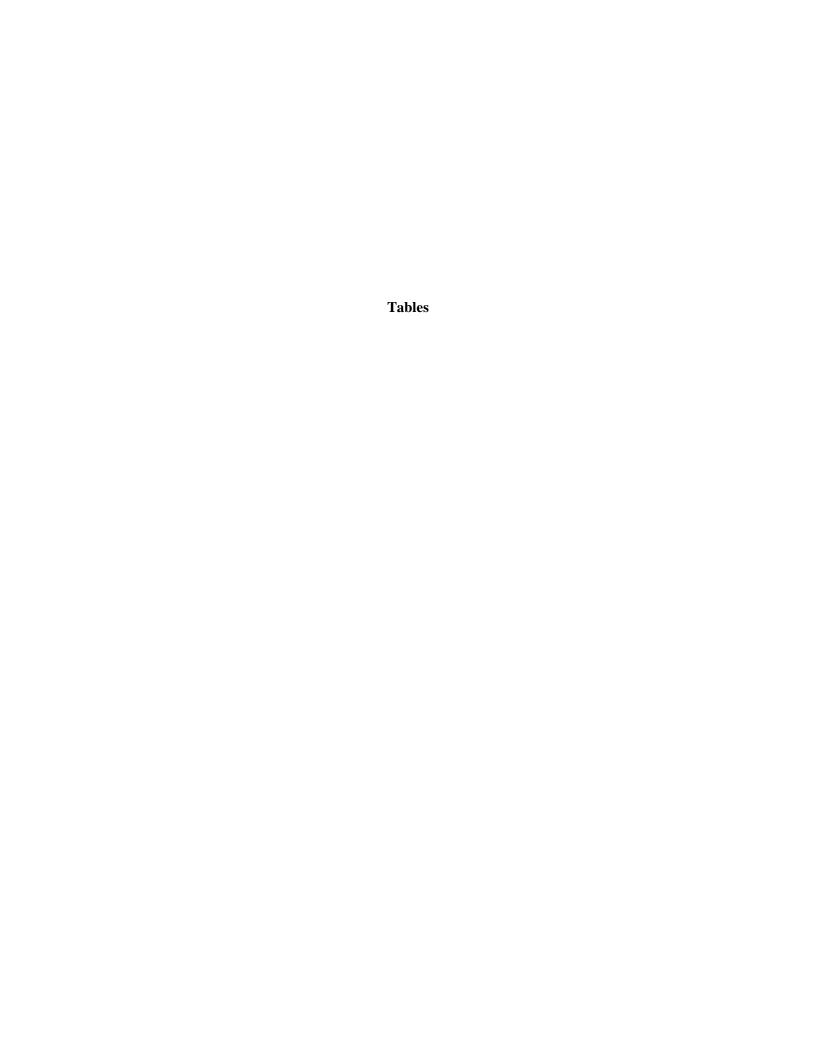
SCFA Southeast Construction Fill Area

SMCL Secondary Maximum Concentration Limit

USEPA United States Environmental Protection Agency


VOC volatile organic compound


YAEC Yankee Atomic Electric Company


YNPS Yankee Nuclear Power Station

8.0 REFERENCES

- Amec Foster Wheeler, 2016. Short Form Health and Safety Plan, Yankee Nuclear Power Station, Rowe, Massachusetts, March 2016.
- ERM 2007. Groundwater Monitoring Plan to Support Closure under the Massachusetts Contingency Plan, Yankee Nuclear Power Station, Site Closure Project, Rowe, Massachusetts, June 2007.
- MassDEP, 2007. Standards and Guidelines for Contaminants in Massachusetts Drinking Waters. Spring 2007. Department of Environmental Protection, Office of Research and Standards.
- MassDEP, 2008. Massachusetts Contingency Plan, 310 CMR 40.000. February 14, 2008.
- MassDEP, 2009. Phase II Comprehensive Site Assessment Report, April 8, 2009.
- MassDEP, 2011. Letter from Massachusetts Department of Environmental Protection to Yankee Atomic Electric Company dated December 6, 2011.
- MassDEP, 2016. Letter from Massachusetts Department of Environmental Protection to Yankee Atomic Electric Company dated February 23, 2016.
- USEPA, 1989. "Region I, Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses;" Hazardous Site Evaluation Division; February, 1989.
- USEPA, 1996a. Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Ground Water Monitoring Wells, July 1996.
- USEPA, 1996b. "Region I, EPA-New England Data Validation Functional Guidelines for Evaluating Environmental Analyses, Parts I and II," Quality Assurance Unit Staff; Office of Environmental Measurement and Evaluation; December, 1996.
- USEPA. 2002. Nationally Recommended Water Quality Criteria: 2002. Office of Water, Science and Technology. Doc. No. EPA-822-R-02-047
- YNPS, 2007. Final Groundwater Conditions Report, Yankee Nuclear Power Station, Rowe, Massachusetts, February 15, 2007.
- YNPS, 2016. Groundwater Monitoring Program, ES-4, Rev. 0, ISFSI Procedure, March 17, 2016.

Table 1 Groundwater and Surface Water Monitoring Program Summary March 2016

Yankee Nuclear Power Station Rowe, Massachusetts

			Analysis Method	VOC - (8260 with TICs) ¹	1,4-Dioxane (8270 SIM)	Calcium, Iron, Manganese	RCRA 8 Metals - (6020A/7470)	Alkalinity - (SM2320B)	COD - (EPA 410.4)	Radionuclides - (Gamma Spec) ^{2, 3}	Strontium- 90 - (GPC, LSC) Hard to Detect	Tritium - (LSC)- Hard to Detect	D.O., ORP, S.C., Temp., NTU (field parameters)
			Fraction	Т	Т	Т	D (Field)	Т	Т	Т	Т	Т	
		Bottle Size (Qty	per Sample)	40 (3)	250 (2)	250 (1)	250 (1)	125 (1)	125 (1) ⁴	2 (1) ⁴	1 (1) ⁴	250 (1) ⁴	
		Bott	tle Size Units	mL	mL	mL	mL	mL	mL	Liter	Liter	mL	
		В	ottle Material	Glass Vial	Amber glass	Poly	Poly	Poly	Poly	Poly	Poly	Amber Glass	
			Preservative	HCI	4 Deg C	HNO3	HNO3	4 Deg C	H2SO4	HNO3	HNO3	None	
			Lab ID	GEL	Eurofins	GEL	GEL	GEL	GEL	GEL	GEL	GEL	FIELD
Media	Loc Name	Field Sample ID	QC Code										
GW	CFW-1	CFW-1	FS			Х		Χ	Х				Х
GW	CFW-5	CFW-5	FS			Х		Х	Х				X
GW	CFW-5	CFW-5DUP	FD			Х		Х	X				
GW	CFW-5	CFW-5MS	MS			Х		Х	Х				
GW	CFW-5	CFW-5MSD	MSD			Х		Х	X				
GW	CFW-6	CFW-6	FS			Х		Х	X				X
GW	MW-105B	MW-105B	FS									Х	X
GW	MW-107C	MW-107C	FS									Х	X
SW	Sherman Spring	SP-1	FS	Х	Х		X			Х	Х	X	X
SW	SW-1	SW-1	FS	Χ	Х	Х	Х	Х	Х				X
SW	SW-4	SW-4	FS	Χ	Х	Х	Х	Х	Х				Х
SW	SW-5	SW-5	FS	Х	Х	Х	Х	Х	Х				Х
QC	EB-006	EB-006	EB									Х	
QC	TB-009	TB-009	TB	Х									
QC	TB-010	TB-010	TB	Х									
TOTAL	1	1		6	4	9	4	9	9	1	1	4	9

Checked/Date: TDL 03/08/16

Notes:

As outlined in 310 CMR 19.132(i), detection limits for all parameters tested in groundwater samples shall be at or below the Massachusetts Drinking Water Standards & Guidelines (Maximum Contaminant Levels, or MCLs), including the 1,4-dioxane MCL of 0.3 micrograms/liter (ug/l)

 $^{^{4}}$ = Sample volume includes volume needed for QC samples, if applicable, for rad parameters and COD

4 Deg C	4 Degrees Celsius	mL	milliliter
COD	chemical oxygen demand	MS	Matrix Spike
D	Dissolved	MSD	Matrix Spike Duplicate
EB	Equipment Blank	NaOH	Sodium Hydroxide
FD	Field Duplicate	QC	Quality Control
FS	Field Sample	RCRA	Resource Conservation and Recovery Act
GEL	General Engineering Laboratories	SW	Surface Water Sample
GPC	Gross Proportional Counter	T	Total
GW	Groundwater Sample	TB	Trip Blank
H2SO4	Sulfuric Acid	TICs	Tentatively Identified Compounds
HCI	Hydrochloric Acid	VOC	volatile organic compound
HNO3	Nitric Acid	X	indicates parameter scheduled for analysis.
LSC	Liquid Scintillation Counter		•
	Location of split sample collected for MassDEP		

¹ = VOCs shall be performed as outlined in 310 CMR 19.132(h)(1-3), specifically methyl ethyl ketone, methyl isobutyl ketone, acetone, and 1,4-dioxane shall be included, and unknown peaks having intensities greater than 5 times the background intensity shall be identified (TICs)

² = Radiological analysis by Gamma Spectroscopy shall at a minimum quantify the radionuclides Ag-108m, Cs-134, Cs-137, Co-60, Eu-152, Eu-154, Eu-155, Nb-94, and Sb-125; also any other plant-related radionuclides detected by gamma spectroscopy above MDAs shall be reported as part of these analyses

 $^{^{3}}$ = Sample volume needed per sample is 2 L for Gamma Spectroscopy

Table 2 Field Parameter Measurements

Post Closure Groundwater and Surface Water Monitoring Report Spring 2016 Yankee Nuclear Power Station Rowe, Massachusetts

	Parameter	Conductivity	DO	Eh	pН	Temperature	Turbidity
	Units	₽Siemens/cm	mg/L	mv	S.U.	Deg C	NTUs
Field Sample ID	Sample Date						
CFW-1	3/24/2016	0.026	5.6	87	7.8	4	
CFW-5	3/24/2016	0.232	4.1	1	7.6	5	6.8
CFW-6	3/24/2016	0.088	3.1	117	6.9	6	1.6
MW-105B	3/23/2016	0.605	0.8	-67	8.0	11	0.6
MW-107C	3/23/2016	0.431	0.6	53	7.0	10	0.7
SW-1	3/24/2016	0.028	14.3	207	7.1	3	0.9
SW-4	3/24/2016	0.026	13.8	144	6.1	3	1.6
SW-5	3/24/2016	0.02	12.0	165	6.0	4	0.8

Prepared/Date: TDL 04/08/16 Checked/Date: ESS 04/21/16

Notes:

Deg C - Degrees Celsius

DO - dissolved oxygen

Eh - oxidation/reduction potential

Siemens/cm - microseimens per centimeter

mg/L - milligrams per liter

mv - millivolts

NTUs - Nephlemetric Turbidity Units

S.U. - Standard Units

-- = well was purged dry prior to sampling; turbidity was not recorded on the sampled water; value was 596 NTU's at end of purging

Table 3 Summary of Tritium Analytical Data and Trend Analysis

Post Closure Groundwater and Surface Water Monitoring Report Spring 2016 Yankee Nuclear Power Station Rowe, Massachusetts

	Aug-03	Sep-03	Nov-03	Mar-04	May-04	Dec-06	Mar-07	Mar-08	Mar-09	Mar-10	Mar-12	Mar-14	Mar-16
Location	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L						
CFW-5	-		-		-	-	392	-	-				
CFW-6	-		-		-	581	4000/4210	-	2440				
MW-102D						6530	8580	1590	-	-			
MW-104A						2850	3100/2930	1850	831/900	967/774	456 / -	-/-	
MW-105B	4850		5220	4890	4530	2900	3440	4710	3490	3890	2500	1640	1460
MW-106A						3010	- /2850	846	484	530	-	-	
MW-107C		48000	45780	8880**	39020	29100	30900	25700	21300	20100	11400	8910	6330
MW-107D		9150	9710	5940	10910	9310	9440	9380	8210	7280			
MW-107E						5700	6420	5060 / 5160	4650	5470			
MW-107F						9210	9220	9890	8150	8940			
Monroe Dam									-	-	-	-	
SP-1	-		-	210	890	1100	452	-	-	244	-	-	-
SW-011									-	-	-		
SW-408									-	-	-		

Trend
Analysis*
Not sampled this even
Decrease
Not sampled this even
Decrease
Not sampled this even

Prepared/Date: KMS 04/21/16 Checked/Date: ESS 04/26/16

pCi/L - picocuries per liter

^{*} Trend analysis is based on a concentration change of greater than 15% from previous four events.

^{**} Result outside expected range and considered questionable. Subsequent results match conceptual site model. 967/774 - shows sample and duplicate sample

[&]quot;-" signifies concentration less than minimum detectable activity

Post Closure Groundwater and Surface Water Monitoring Report Spring 2016 Yankee Nuclear Power Station Rowe, Massachusetts

		Location	CFW-1	CFW-1	CFW-1	CFW-1	CFW-1	CFW-1							
		Sample Date	8/7/2003	8/18/2004	8/19/2005	8/25/2005	9/18/2006	9/19/2006	3/15/2007	3/16/2007	3/25/2008	3/11/2009	3/3/2010	3/8/2012	3/5/2014
			CFW-1-080703	CFW-1-081804	CFW-1-081905	CFW-1-082505	CFW-1-091806	CFW-1-091906	CFW-1-031507	CFW-1-031607	CFW-1	CFW-1	CFW-1	CFW-1	CFW-1
		Oc Code	FS	FS	FS	FS	FS	FS							
Analysis	Parameter	MCP Criteria													
VOCs	4-Methyl-2-pentanone	0.35	-	-	0.0014 J		-		-		-	-	-	-	-
	Acetone	6.3	R	-	-		R		-		0.0027	-	-	-	-
	Chloromethane	NA	-	0.00069 J	0.0007 J		-		-						
	Methylene chloride	0.005	-	-	-		-		-		-	-	-	-	-
	Naphthalene	0.14	-		-		-		-		-	-	-	-	-
	Toluene	1	-	0.00043 J	-		-		-		-	-	-	-	-
Metals	Arsenic	0.01	-	-	-			-		-	-	-	-	-	-
	Barium	2	0.017	0.014	0.012			0.0451		0.0138	-	-	-	0.0248	0.0417
	Cadmium	0.005	-	-	-			-		0.0005 J	-	-	-	-	-
	Calcium	NA								1.83	1.5	1.7	1.3	1.9	2.51
	Chromium	0.1	-	-	-			0.0036 J		-	-	-	-	0.00263 J	0.00673 J
	Copper	1.3	-	-	-			0.0091		0.0026 J	-	-	-	0.00406	0.00752
	Iron	0.3*	1.8	1.2 J	0.706 J			10.7		1.98	5.8 J	3.6 J	5.7	9.15	13.4
	Lead	0.015	-	-	-			0.0056 J		0.0041 J	-	-	-	0.0012 J	0.002
	Manganese	0.05*	0.047	0.11	0.0533			0.305		0.12	0.15	0.14	0.2	0.22	0.233
	Mercury	0.002	-	-	-			-		-	-	-	-	-	-
	Selenium	0.05	-	-	-			-		-	-	-	-	-	-
	Silver	0.1	-	-	-			-		0.0013 J	-	-	-	-	0.00134
	Sodium	NA								1.28	0.94	-	0.81	0.958	0.935
	Zinc	5	-	-	-			-		0.0126	-	-	-	0.0142	0.0189
Cyanide	Cyanide, Total	0.2									-	-	-	-	-
Wet Chemistry	Total Alkalinity, as CaCO3	NA	6	5.1	7		5		7.14		3.4	3.4 J	4.6	5.64	4.07 J
	Chemical Oxygen Demand	NA	-	-	-		14.4			17.8	-	-	-	13.2 J	6.9 J
	Chloride	250*	-	-	-		-		0.67 J		-	-	-	0.6	0.594
	Nitrate as N	10	-	-		-		0.08 J		-	-	-	-	-	-
	Sulfate	250*	4.4 J	4.9	3.81 J		3.7		3.32		3.2	3.3	2.6	2.78	3.43
	Total Dissolved Solids	500*	-	4	22	13		29		12	46	1	-	15 J	8.57 J

Notes:

All results in milligrams per liter (mg/L)

Bold Italics indicates an exceedance of applicable criteria.

Applicable criteria is the MCP GW-1 standard (310 CMR 40.0974(2); effective

2/14/2008) and, if not available, the Maximum Contaminant Level or Secondary

Maximum Contaminant Level (SMCL) (MADEP, 2007)

* indicates SMCL; not a health-based standard

FD - Field Duplicate

FS - Field Sample J - estimated value

NA - Not Available QC - Quality Control

R - data rejected during validation; unusable

VOCs - volatile organic compounds

Post Closure Groundwater and Surface Water Monitoring Report Spring 2016 Yankee Nuclear Power Station Rowe, Massachusetts

		Location	CFW-1	CFW-5	CFW-5	CFW-5	CFW-5	CFW-5	CFW-5						
		Sample Date	3/24/2016	8/5/2003	3/22/2004	6/8/2004	8/18/2004	8/17/2005	9/13/2006	3/8/2007	3/26/2008	3/26/2008	3/10/2009	3/10/2009	3/2/2010
		Sample ID	CFW-1	CFW-5-080503	CFW-5-032204	CFW-5-060804	CFW-5-081804	CFW-5-081705	CFW-5-091306	CFW-5-030807	CFW-5	CFW-5 DUP	CFW-5	CFW-5DUP	CFW-5
		Qc Code	FS	FS	FS	FS	FS	FS	FS	FS	FS	FD	FS	FD	FS
Analysis	Parameter	MCP Criteria													
VOCs	4-Methyl-2-pentanone	0.35		-			-	0.0006 J	-	-	-	-	-	-	-
	Acetone	6.3		-			-	-	R	-	-	-	-	-	-
	Chloromethane	NA		-			0.00069 J	0.0009 J	-	-					
	Methylene chloride	0.005		-			-	-	-	-	-	-	-	-	-
	Naphthalene	0.14		-				-	-	-	-	-	-	-	-
	Toluene	1		-			-	-	-	-	-	-	-	-	-
Metals	Arsenic	0.01		-			-	-	-	0.0063	-	-	-	-	-
	Barium	2		0.043			0.061	0.0612	0.0638	0.0537	-	-	0.051	0.052	0.053
	Cadmium	0.005		-			-	-	-	-	-	-	-	-	-
	Calcium	NA	2.79		19.3	21.4				29.1	16	15	28	28	28
	Chromium	0.1		-			-	-	-	-	-	-	-	-	-
	Copper	1.3		-			-	-	-	-	-	-	-	-	-
	Iron	0.3*	15.3	38	26.2	27.2	67	89.2	75.1	70.6	32 J	<i>31</i> J	65 J	63 J	70
	Lead	0.015		R			-	-	0.0036 J	-	-	-	-	-	-
	Manganese	0.05*	0.346	3.5	2.42	2.58	4.4	4.16 J	4.62	4.28	1.9	1.8	3.7	3.7	3.8
	Mercury	0.002		-			-	-	-	-	-	-	-	-	-
	Selenium	0.05		-			-	-	0.007 J	-	-	-	-	-	0.021 J
	Silver	0.1		-			-	-	-	-	-	-	0.017	0.018	-
	Sodium	NA								3.71	1.8	1.6	-	-	2.9
	Zinc	5		-			-	-	-	-	-	-	-	-	-
Cyanide	Cyanide, Total	0.2									-	-	0.012	0.012	-
Wet Chemistry	Total Alkalinity, as CaCO3	NA	5.22	87	92.8	87.6	93	101	130	127	69	63	130 J	170 J	110
	Chemical Oxygen Demand	NA	38	26	20.8	23.7	32	27.3	36.9	51.9	18	17	35	30	29
	Chloride	250*		-			2.7	1.91	15.5 J	9.12	2.3	2.2	4.8	4.2	5.1 J
	Nitrate as N	10		-			-	-	-	0.04 J	-	-	-	-	-
	Sulfate	250*		1.2			1.2	0.58 J	-	0.44 J	2.3	2.3	-	-	-
	Total Dissolved Solids	500*		120			200	111	170	170	110	100	110	150	130 J

Notes:

All results in milligrams per liter (mg/L)

Bold Italics indicates an exceedance of applicable criteria.

Applicable criteria is the MCP GW-1 standard (310 CMR 40.0974(2); effective 2/14/2008) and, if not available, the Maximum Contaminant Level or Secondary

Manipular Contaminant Level (SMCL) (MADED 2007)

Maximum Contaminant Level (SMCL) (MADEP, 2007)

* indicates SMCL; not a health-based standard

FD - Field Duplicate

FS - Field Sample J - estimated value

NA - Not Available

QC - Quality Control

R - data rejected during validation; unusable

VOCs - volatile organic compounds

Post Closure Groundwater and Surface Water Monitoring Report Spring 2016 Yankee Nuclear Power Station Rowe, Massachusetts

		Location	CFW-5	CFW-5	CFW-5	CFW-5	CFW-5	CFW-5	CFW-5	CFW-6	CFW-6	CFW-6	CFW-6	CFW-6	CFW-6
		Sample Date	3/2/2010	3/6/2012	3/6/2012	3/4/2014	3/4/2014	3/24/2016	3/24/2016	8/11/2003	8/18/2004	8/24/2005	8/24/2005	4/19/2006	9/13/2006
		Sample ID	CFW-5 Dup	CFW-5	CFW-5DUP	CFW-5	CFW-5 DUP	CFW-5	CFW-5 DUP	CFW-6-081103	CFW-6-081804	FD001-082405	CFW-6-082405	CFW-6-042006	CFW-6-091306
		Qc Code	FD	FS	FD	FS	FD	FS	FD	FS	FS	FD	FS	FS	FS
Analysis	Parameter	MCP Criteria													
VOCs	4-Methyl-2-pentanone	0.35	-	-	-	-	-			-	-	0.0009 J	0.0008 J	-	-
	Acetone	6.3	-	-	-	-	-			-	-	-	0.008 J	0.0026 J	R
	Chloromethane	NA								-	-	-	-	-	-
	Methylene chloride	0.005	-	-	-	0.00159 J	0.00165 J			-	-	-	-	-	-
	Naphthalene	0.14	-	-	-	-	-			-		-	-	-	-
	Toluene	1	-	-	-	-	-			-	-	-	-	-	-
Metals	Arsenic	0.01	-	-	-	-	-			-	-	-	-	-	-
	Barium	2	0.053	0.0681	0.0685 J	0.0487	0.0489			0.069	0.077	0.0641	0.0629		0.0544
	Cadmium	0.005	-	-	-	-	-			-	-	-	-	-	-
	Calcium	NA	27	31.9	33 J	28.3	28.7	19.3	21.4						
	Chromium	0.1	-	-	-	-	-			-	-	-	-	-	0.0024 J
	Copper	1.3	-	-	-	-	-			-	-	-	-	-	-
	Iron	0.3*	71	85.5	86.4 J	45.7	47.4	26.2	27.2	67	<i>51</i> J	71.5	71		64.6
	Lead	0.015	-	-	-	-	-			-	-	-	-	-	0.0031 J
	Manganese	0.05*	3.7	5.32	5.36 J	3.61	3.76	2.42	2.58	8.8	6.9	7.65	7.54		6.69
	Mercury	0.002	-	-	-	-	-			-	-	-	-	-	0.00018 J
	Selenium	0.05	0.022 J	-	-	-	-			-	-	-	-	-	0.0091 J
	Silver	0.1	-	-	-	-	-			-	-	-	-	-	-
	Sodium	NA	2.9	3.11	2.95 J	2.36	2.29								
	Zinc	5	-	-	-	-	-			-	-	-	-	-	0.0134
Cyanide	Cyanide, Total	0.2	-	-	-	-	-								
Wet Chemistry	Total Alkalinity, as CaCO3	NA	140	R	152	136 J	139 J	92.8	87.6	100	110	136	116		108
	Chemical Oxygen Demand	NA	26	59.7	52.7	34.4	34.4	20.8	23.7	38	33	30.1	31.8		35.1
	Chloride	250*	5 J	R	3.92	1.37	1.37			-	2.3	9.12	7.79		14.7 J
	Nitrate as N	10	-	R	-	-	-			-	-	-	-		0.04 J
	Sulfate	250*	-	R	0.557	0.226 J	0.249 J			-	-	-	-		-
	Total Dissolved Solids	500*	140 J	R	180	163	190			180	200	204	214		147

Notes:

All results in milligrams per liter (mg/L)

Bold Italics indicates an exceedance of applicable criteria.

Applicable criteria is the MCP GW-1 standard (310 CMR 40.0974(2); effective

2/14/2008) and, if not available, the Maximum Contaminant Level or Secondary

Maximum Contaminant Level (SMCL) (MADEP, 2007)

* indicates SMCL; not a health-based standard

FD - Field Duplicate

FS - Field Sample J - estimated value

NA - Not Available QC - Quality Control

R - data rejected during validation; unusable

VOCs - volatile organic compounds

Post Closure Groundwater and Surface Water Monitoring Report Spring 2016 Yankee Nuclear Power Station Rowe, Massachusetts

		Location	CEW 6	CEW 6	CPW 6	CEW 6	CEW 6	CEW 6	CEW 6	CEW 6	CEW 6	CEW 6
			CFW-6	CFW-6	CFW-6	CFW-6	CFW-6	CFW-6	CFW-6	CFW-6	CFW-6	CFW-6
		Sample Date		3/8/2007	3/8/2007	3/25/2008	3/10/2009	3/2/2010	3/6/2012	3/6/2012	3/5/2014	3/24/2016
		Sample ID		CFW-6-030807	FD007-030807	CFW-6	CFW-6	CFW-6	CFW-6	CFW-6	CFW-6	CFW-6
	_	Qc Code	FD	FS	FD	FS	FS	FS	FS	FS	FS	FS
Analysis	Parameter	MCP Criteria										
VOCs	4-Methyl-2-pentanone	0.35	-	-	-	-	-	-	-	-	-	
	Acetone	6.3	R	-	-	-	-	-	-	-	-	
	Chloromethane	NA	-	-	-							
	Methylene chloride	0.005	-	-	-	-	0.00071 J	-	-	-	-	
	Naphthalene	0.14	-	-	-	-	-	-	-	-	-	
	Toluene	1	-	-	-	-	-	-	-	-	-	
Metals	Arsenic	0.01	-	0.0054 J	0.0049 J	-	-	-	-	-	-	
	Barium	2	0.0592	0.0612	0.0592	-	-	-	0.0602	0.0647	0.0647	
	Cadmium	0.005	-	0.0005 J	0.0002 J	-	-	-	-	0.000135 J	0.000135 J	
	Calcium	NA		25.5	25.4	7.4	14	14	16.7	15.9	15.9	9.34
	Chromium	0.1	0.0027 J	0.0022 J	0.0028 J	-	-	-	-	-	-	
	Copper	1.3	-	-	-	-	-	-	-	-	-	
	Iron	0.3*	68.1	56.8	58.8	0.57 J	39 J	20	67.1	35.5	35.5	4.64
	Lead	0.015	0.003 J	0.0029 J	-	-	-	-	-	-	-	
	Manganese	0.05*	7.2	6.74	6.8	0.2	3.6	2.9	4.93	3.74	3.74	1.33
	Mercury	0.002	-	0.00006 J	-	-	-	-	-	-	-	
	Selenium	0.05	0.0101 J	-	-	-	-	-	-	-	-	
	Silver	0.1	-	-	-	-	0.013	-	-	-	-	
	Sodium	NA		1.56	1.52	1.3	-	2.7	5.05	4	4	
	Zinc	5	-	-	0.0056	-	-	-	-	0.00581 J	0.00581 J	
Cyanide	Cyanide, Total	0.2				-	-	-	0.00412 J	-	-	
Wet Chemistry	Total Alkalinity, as CaCO3	NA	131	100	128	17	100 J	71	126	108 J	108 J	26.1
_	Chemical Oxygen Demand	NA	36.4	26.3	51.9	27	23	12	59.7	39.4	39.4	40.8
	Chloride	250*	16.1 J	12.5	11.8	-	3.2	2.7 J	1.53	0.911	0.911	
	Nitrate as N	10	-	0.04 J	0.04 J	-	-	-	-	-	-	
	Sulfate	250*	_	0.7 J	0.68 J	4.7	5.8	4.3 J	0.755	1.49	1.49	
	Total Dissolved Solids	500*	172	189	181	33	77	89 J	187	130	130	

Notes:

All results in milligrams per liter (mg/L)

Bold Italics indicates an exceedance of applicable criteria.

Applicable criteria is the MCP GW-1 standard (310 CMR 40.0974(2); effective

2/14/2008) and, if not available, the Maximum Contaminant Level or Secondary

Maximum Contaminant Level (SMCL) (MADEP, 2007)

* indicates SMCL; not a health-based standard

FD - Field Duplicate

FS - Field Sample

J - estimated value

NA - Not Available

QC - Quality Control

R - data rejected during validation; unusable

VOCs - volatile organic compounds

Post Closure Groundwater and Surface Water Monitoring Report Spring 2016 Yankee Nuclear Power Station Rowe, Massachusetts

			,	abbacitabetts					
		Location	SW-1	SW-1	SW-1	SW-1	SW-1	SW-1	SW-2
		Sample Date	3/25/2008	3/10/2009	3/3/2010	3/8/2012	3/5/2014	3/24/2016	3/25/2008
		Sample ID	SW-1	SW-1	SW-1	SW-1	SW-1	SW-1	SW-2
		Qc Code	FS	FS	FS	FS	FS	FS	FS
Analysis	Param Name	Screening Values							
VOCs	Methylene chloride	0.005	-	-	-	-	-	-	-
	1,4-Dioxane	0.0003						-	
Metals	Barium	1	-	-	-	0.0123	0.00967	0.00796	-
	Calcium	NA	2.5	2.2	2.6	2.39	2.84	1.96	2.3
	Chromium	0.1	-	-	-	-	0.00215 J	-	-
	Iron	0.3*	0.016 J	0.064 J	0.032	0.133	-	-	0.021 J
	Manganese	0.05*	-	-	-	0.0144	0.0202	0.00312 J	-
	Sodium	NA	1.1	-	0.78	0.878	1.1		1.1
	Zinc	5	-	-	-	0.00451 J	-		-
Cyanide	Cyanide, Total	0.004	-	-	-	-	-		-
Wet Chemistry	Total Alkalinity, as CaCO3	NA	1.9	2.3	5.4	2.57	4.07 J	3.13	1.1
	Chemical Oxygen Demand	NA	-	-	-	-	-	18 J	-
	Chloride	250*	-	-	-	0.591	0.47		-
	Nitrate as N	10	-	-	-	0.25	0.14		-
	Sulfate	250*	5	4.2	5.5	4.97	5.91		5
	Total Dissolved Solids	500	21	5	19 J	20	4.29 J		54

Prepared/Date: KMS 04/21/16

Checked/Date: ESS 04/21/16

Notes:

All results in milligrams per liter (mg/L)

Screening value is the USEPA Ambient Water Quality Criteria

(AWQC) and, if not available, the Maximum Contaminant

Level or Secondary Maximum Contaminant Level (MADEP, 2007)

* indicates criteria is from the Secondary Maximum

Contaminant Level; not a health-based standard

FS - Field Sample

J - estimated value

NA - Not Available

QC - Quality Control

VOCs - volatile organic compounds

Post Closure Groundwater and Surface Water Monitoring Report Spring 2016 Yankee Nuclear Power Station Rowe, Massachusetts

		Location	SW-2	SW-2	SW-2	SW-2	SW-3	SW-3	SW-3
		Sample Date	3/10/2009	3/3/2010	3/8/2012	3/4/2014	3/25/2008	3/10/2009	3/3/2010
		Sample ID	SW-2	SW-2	SW-2	SW-2	SW-3	SW-3	SW-3
		Qc Code	FS	FS	FS	FS	FS	FS	FS
Analysis	Param Name	Screening Values							
VOCs	Methylene chloride	0.005	-	-	-	0.00151 J	-	-	-
	1,4-Dioxane	0.0003							
Metals	Barium	1	-	-	0.0107	0.0108	-	-	-
	Calcium	NA	2.1	2.5	1.89	2.25	2.2	2	2.4
	Chromium	0.1	-	-	-	-	-	-	-
	Iron	0.3*	0.063 J	0.037	0.0483 J	-	0.029 J	0.061 J	0.5
	Manganese	0.05*	-	-	0.00437 J	0.00835	-	-	0.074
	Sodium	NA	-	0.8	0.675	0.857	1.1	-	0.6
	Zinc	5	-	-	0.00491 J	0.00356 J	-	-	-
Cyanide	Cyanide, Total	0.004	-	-	-	-	-	-	-
Wet Chemistry	Total Alkalinity, as CaCO3	NA	2.1	5.4	2.05	-	-	1.7	5.6
	Chemical Oxygen Demand	NA	-	-	-	11.9 J	-	-	-
	Chloride	250*	-	-	0.556	0.571	-	-	-
	Nitrate as N	10	-	-	0.227	0.0937 J	-	-	-
	Sulfate	250*	5.4	5.5	4.26	5.22	5.9	5.3	4.8
	Total Dissolved Solids	500	16	19 J	15.7	5.71 J	8	26	13 J

Prepared/Date: KMS 04/21/16

Checked/Date: ESS 04/21/16

Notes:

All results in milligrams per liter (mg/L)

Screening value is the USEPA Ambient Water Quality Criteria

(AWQC) and, if not available, the Maximum Contaminant

Level or Secondary Maximum Contaminant Level (MADEP, 2007)

Contaminant Level; not a health-based standard

FS - Field Sample

J - estimated value

NA - Not Available

QC - Quality Control

VOCs - volatile organic compounds

st indicates criteria is from the Secondary Maximum

Post Closure Groundwater and Surface Water Monitoring Report Spring 2016 Yankee Nuclear Power Station

Rowe, Massachusetts

		Location	SW-3	SW-3	SW-4	SW-4	SW-4	SW-4	SW-4
		Sample Date	3/8/2012	3/4/2014	3/25/2008	3/10/2009	3/2/2010	3/6/2012	3/4/2014
		Sample ID	SW-3	SW-3	SW-4	SW-4	SW-4	SW-4	SW-4
		Qc Code	FS	FS	FS	FS	FS	FS	FS
Analysis	Param Name	Screening Values							
VOCs	Methylene chloride	0.005	-	0.00173 J	-	-	-	-	-
	1,4-Dioxane	0.0003							
Metals	Barium	1	0.0106	0.0103	-	-	-	0.0142	0.0118
	Calcium	NA	1.95	2.54	2.6	2.2	2.4	3.12	3.04
	Chromium	0.1	-	-	-	-	-	-	-
	Iron	0.3*	0.362	0.514	<i>1.1</i> J	<i>0.55</i> J	0.9	2.08	1.81
	Manganese	0.05*	0.0242	0.0661	0.14	0.076	0.13	0.24	0.212
	Sodium	NA	0.654	0.893	1.1	-	0.65	0.96	0.967
	Zinc	5	0.00362 J	-	-	-	-	0.00456 J	-
Cyanide	Cyanide, Total	0.004	-	-	-	-	-	-	-
Wet Chemistry	Total Alkalinity, as CaCO3	NA	3.08	5.6 J	3.5	2.9	6.5	6.67	8.14 J
	Chemical Oxygen Demand	NA	-	19.4 J	-	-	-	13.2 J	-
	Chloride	250*	0.553	0.673	-	-	-	0.711	0.61
	Nitrate as N	10	0.228	0.0986 J	-	-	-	0.205	0.0932 J
	Sulfate	250*	4.28	5.13	5.1	5.2	4.8 J	4.79	5.05
	Total Dissolved Solids	500	8.57 J	4.29 J	19	35	11 J	28.6	15.7

Prepared/Date: KMS 04/21/16

Checked/Date: ESS 04/21/16

Notes:

All results in milligrams per liter (mg/L)

Screening value is the USEPA Ambient Water Quality Criteria

(AWQC) and, if not available, the Maximum Contaminant

Level or Secondary Maximum Contaminant Level (MADEP, 2007)

* indicates criteria is from the Secondary Maximum

Contaminant Level; not a health-based standard

FS - Field Sample

J - estimated value

NA - Not Available

QC - Quality Control

VOCs - volatile organic compounds

Post Closure Groundwater and Surface Water Monitoring Report Spring 2016 Yankee Nuclear Power Station Rowe, Massachusetts

			,	uppucii upccep					
		Location	SW-4	SW-5	SW-5	SW-5	SW-5	SW-5	SW-5
		Sample Date	3/24/2016	3/25/2008	3/10/2009	3/2/2010	3/6/2012	3/4/2014	3/24/2016
		Sample ID	SW-4	SW-5	SW-5	SW-5	SW-5	SW-5	SW-5
		Qc Code	FS	FS	FS	FS	FS	FS	FS
Analysis	Param Name	Screening Values							
VOCs	Methylene chloride	0.005	-	-	-	-	-	-	-
	1,4-Dioxane	0.0003	-						-
Metals	Barium	1	0.0107	-	-	-	0.0126	0.0105	0.00999
	Calcium	NA	2.05	2.3	2.2	2	2.77	2.33	1.8
	Chromium	0.1	-	-	-	-	-	-	-
	Iron	0.3*	0.774	0.26 J	<i>0.48</i> J	0.27	1.52	0.496	0.265
	Manganese	0.05*	0.107	0.04	0.071	0.044	0.141	0.0657	0.04
	Sodium	NA		1	-	0.6	0.883	0.859	
	Zinc	5		-	-	-	-	-	
Cyanide	Cyanide, Total	0.004		-	-	-	-	-	
Wet Chemistry	Total Alkalinity, as CaCO3	NA	3.65	1.5	2.7	4.3	13.9	3.56 J	2.09
	Chemical Oxygen Demand	NA	-	-	-	-	13.2 J	31.9	29.4
	Chloride	250*		-	-	-	0.662	0.526	
	Nitrate as N	10		-	-	-	0.195	0.087 J	
	Sulfate	250*		5	5.3	4.2 J	4.67	4.72	
	Total Dissolved Solids	500		31	3	4 J	20	37.1	

Prepared/Date: KMS 04/21/16

Checked/Date: ESS 04/21/16

Notes:

All results in milligrams per liter (mg/L)

Screening value is the USEPA Ambient Water Quality Criteria

(AWQC) and, if not available, the Maximum Contaminant

Level or Secondary Maximum Contaminant Level (MADEP, 2007)

Contaminant Level; not a health-based standard

FS - Field Sample

J - estimated value

NA - Not Available

QC - Quality Control

VOCs - volatile organic compounds

^{*} indicates criteria is from the Secondary Maximum

Table 6 Monitoring Well Status Update April 2016

Post Closure Groundwater and Surface Water Monitoring Report Spring 2016 Yankee Nuclear Power Station Rowe, Massachusetts

Well ID	Well Diameter	Well Depth (feet)	Protection	Is Well Located in BUD?	Is Well Located in BUDFA?	Surrounding Area	Well Status as of April 2016
CB-3R	2 inch	21	Standpipe	Yes	No	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
CB-4	2.25 inch	20	Road box	No	No	Topsoil, grass seed	Decommissioning activities completed in 2010
CB-6	2 inch	27	Standpipe	No	No	Topsoil, grass seed	Decommissioning activities completed in 2010
CB-8	2.5 inch	24.5	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
CW-5R	2 inch	23	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
CW-10	2 inch	31.5	Standpipe	Yes	No	Topsoil, grass seed	Decommissioning activities completed in 2010
CFW-1	2 inch	8	Standpipe	No	No	Topsoil, grass seed	Part of long-term monitoring program
CFW-5	2 inch	5	Standpipe	No	No	Topsoil, grass seed	Part of long-term monitoring program
CFW-6	2 inch	6	Standpipe	No	No	Topsoil, grass seed	Part of long-term monitoring program
HA-1	Unknown	18	Standpipe	Yes	No	Topsoil, grass seed	Proposed for grouting 2012 but well could not be located. It is believed that it was a temporary well and was previously removed.
MW-6R	2 inch	22	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-100A	2 inch	20	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-100B	2 inch	43	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-101A	2 inch	25	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-101B	2.25 inch	156	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-101C	2 inch	99	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-102A	2 inch	39	Standpipe	Yes	Yes	Topsoil, grass seed	Leave for possible future sampling
MW-102B	2 inch	131.5	Standpipe	Yes	Yes	Topsoil, grass seed	Leave for possible future sampling
MW-102C	2 inch	99	Standpipe	Yes	Yes	Topsoil, grass seed	Leave for possible future sampling
MW-102D	2 inch	21	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-103A	2 inch	26	Standpipe	No	No	Topsoil, grass seed	Decommissioning activities completed in 2010
MW-103B	2.25 inch	295	Standpipe	No	No	Topsoil, grass seed	Decommissioning activities completed in 2010
MW-103C	2 inch	125	Standpipe	No	No	Topsoil, grass seed	Decommissioning activities completed in 2010
MW-104A	2 inch	20	Standpipe	Yes	No	Topsoil, grass seed	Leave for possible future sampling
MW-104B	2.25 inch	194.5	Standpipe	Yes	No	Topsoil, grass seed	Monitoring well grouted to the surface in 2010
MW-104C	2.25 inch	99	Standpipe	Yes	No	Topsoil, grass seed	Monitoring well grouted to the surface in 2010
MW-104D	2 inch	45	Standpipe	Yes	No	Topsoil, grass seed	Monitoring well grouted to the surface in 2010
MW-105A	2 inch	20	Standpipe	Yes	No	Topsoil, grass seed	Leave for possible future sampling
MW-105B	2 inch	75	Standpipe	Yes	No	Topsoil, grass seed	Part of long-term monitoring program
MW-105C	2 inch	45	Standpipe	Yes	No	Topsoil, grass seed	Leave for possible future sampling
MW-106A	2 inch	22	Road box	No	No	Topsoil, grass seed	Leave for possible future sampling
MW-106B	2.25 inch	265	Road box	No	No	Topsoil, grass seed	Decommissioning activities completed in 2010
MW-106C	2 inch	95	Road box	No	No	Topsoil, grass seed	Decommissioning activities completed in 2010
MW-106D	2.25 inch	155	Road box	No	No	Topsoil, grass seed	Decommissioning activities completed in 2010
MW-107A	2 inch	25	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-107B	2.25 inch	110	Standpipe	Yes	Yes	Topsoil, grass seed	Leave for possible future sampling
MW-107C	2 inch	32	Standpipe	Yes	Yes	Topsoil, grass seed	Part of long-term monitoring program

Table 6 Monitoring Well Status Update April 2016

Post Closure Groundwater and Surface Water Monitoring Report Spring 2016 Yankee Nuclear Power Station Rowe, Massachusetts

Well ID	Well Diameter	Well Depth (feet)	Protection	Is Well Located in BUD?	Is Well Located in BUDFA?	Surrounding Area	Well Status as of April 2016
MW-107D	2 inch	81.2	Standpipe	Yes	Yes	Topsoil, grass seed	Leave for possible future sampling
MW-107E	2 inch	60	Standpipe	Yes	Yes	Topsoil, grass seed	Leave for possible future sampling
MW-107F	2 inch	57	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-108A	2 inch	25	Standpipe	Yes	No	Topsoil, grass seed	Decommissioning activities completed in 2010
MW-108B	2.25 inch	215	Standpipe	Yes	No	Topsoil, grass seed	Decommissioning activities completed in 2010
MW-108C	2 inch	170	Standpipe	Yes	No	Topsoil, grass seed	Decommissioning activities completed in 2010
MW-109A	2 inch	20	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2010
MW-109B	2.25 inch	190	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2010
MW-109C	2 inch	55	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2010
MW-109D	2 inch	113	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2010
MW-110A	2 inch	30	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-110B	2 inch	110	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-110C	2 inch	51	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-110D	2 inch	88	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-111A	2 inch	23	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-111B	2 inch	80	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-111C	2 inch	37	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-112A	2 inch	26	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-113A	2 inch	25	Road box	No	No	Topsoil, grass seed	Decommissioning activities completed in 2010
MW-113C	2 inch	90	Road box	No	No	Topsoil, grass seed	Decommissioning activities completed in 2010

Notes:

BUD = Beneficial Use Determination BUDFA = Beneficial Use Determination Fill Area Created by MV 7/10/12 Updated and Checked by ESS 04/26/16

APPENDIX A

MassDEP LETTER TO YNPS DATED FEBRUARY 23, 2016, "ROWE – DSWM-16-253-009

MassDEP – APPROVAL MINOR MODIFICATION PERMIT POST-CLOSURE

ENVIRONMENTAL MONITORING 310 CMR 19.000"

Commonwealth of Massachusetts
Executive Office of Energy & Environmental Affairs

Department of Environmental Protection

One Winter Street Boston, MA 02108 • 617-292-5500

Charles D. Baker Governor

Karyn E. Polito Lieutenant Governor Matthew A. Beaton Secretary

> Martin Suuberg Commissioner

Yankee Atomic Electric Company 49 Yankee Rd Rowe, MA 01367

Attention:

Brian Smith, ISFSI Manager

RE:

Rowe-DSWM-16-253-009

MassDEP - **Approval** Minor Modification Permit

Post-Closure Environmental Monitoring

FEB 23 2016

310 CMR 19.000

Yankee Nuclear Power Station

49 Yankee Road

Dear Mr. Smith:

On January 13, 2016, the Massachusetts Department of Environmental Protection (MassDEP) received the Minor Modification Permit application (the application), entitled "Proposed 2015 Revisions to the Groundwater and Surface Water Monitoring Program", for the former Yankee Nuclear Power Station (YNPS) in Rowe, MA. The application was prepared by Ransom Consulting, Inc. (Ransom) on behalf of Yankee Atomic Electric Company (Yankee), the owner of the YNPS. The application proposes to amend the June 19, 2007 MassDEP approval of the Final Post-Closure Groundwater Monitoring Plan (the Groundwater Monitoring Plan) for the YNPS, which addressed environmental monitoring at the Beneficial Use Determination (BUD) Fill Area (the former industrial area) and the Southeast Construction Fill Area (SCFA), in accordance with MassDEP's Solid Waste Regulations at 310 CMR 19.000.

In accordance with 310 CMR 19.142, the June 19, 2007 Groundwater Monitoring Plan approval required ongoing groundwater monitoring during the 30-year post-closure maintenance and monitoring period (which ends on June 19, 2037) at groundwater monitoring wells MW-104A, MW-105B, MW-106A, MW-107C, and Sherman Spring (SP-1) in the BUD Fill Area, and also at monitoring wells CFW-1, CFW-5, and CFW-6 in the SCFA. On December 6, 2011, MassDEP issued correspondence to Yankee, which approved the decommissioning of numerous additional groundwater monitoring wells at the YNPS, but which required Yankee to retain, maintain and preserve monitoring wells MW-102A, MW-102B, MW-102C, MW-105A, MW-105C, MW-107B, MW-107D, and MW-107E throughout the 30-year post-closure maintenance and monitoring period.

Proposed Modifications

The application proposes the following modifications to the June 19, 2007 Groundwater Monitoring Plan

approval:

- 1. Discontinue all groundwater monitoring in the BUD Fill Area, except continue monitoring for tritium only, in monitoring well MW-107C and Sherman Spring, every five years.
- Abandon and properly decommission all remaining groundwater monitoring wells in the BUD Fill Area, i.e. MW-102A, MW-102B, MW-102C, MW-105A, MW-105C, MW-107B, MW-107D, and MW-107E. Decommissioning will include grouting the full depth of each well, in accordance with MassDEP's "Standard References for Monitoring Wells, Policy #WSC-310-91, dated April, 1991" (Standard References).
- 3. Discontinue surface water sampling at the Deerfield River (upstream/SW-408, and downstream/Monroe Dam), Sherman Reservoir (SW-011), and locations SW-2 and SW-3 on Wheeler Brook.
- 4. Continue monitoring at the SCFA of groundwater monitoring wells CFW-1, CFW-5, & CFW-6 and surface water locations SW-1, SW-4, & SW-5 in Wheeler Brook every five years, but reduce monitoring parameters to: dissolved oxygen, oxidation/reduction potential, specific conductance, temperature and turbidity (as field parameters); and alkalinity, calcium, iron, manganese, and chemical oxygen demand (as laboratory parameters).

Ransom states that the proposed reductions in environmental monitoring are justified based on monitoring results to date. Ransom states that the next monitoring event is scheduled for 2019, however MassDEP notes that the actual scheduled monitoring events, according to the Groundwater Monitoring Plan, are 2016, 2021, 2026, 2031, and 2036.

MassDEP Determinations

MassDEP has reviewed the Minor Modification permit application in accordance with MGL c. 111 s. 150A, MGL c. 30A, the Massachusetts Solid Waste Regulations 310 CMR 19.000, the MassDEP's publication Landfill Technical Guidance Manual (the LAC), revised in May, 1997, and the MassDEP's publication Standard References for Monitoring Wells (WSC-310-91). MassDEP approves the Minor Modification permit application in accordance with the regulations at 310 CMR 19.000, subject to the following conditions and requirements.

- 1. Yankee shall perform environmental monitoring at the YNPS site in accordance with this Modification Permit approval during 2016, 2021, 2026, 2031, and 2036. MassDEP may, in writing, extend or shorten the 30-year post-closure monitoring period, or modify the post-closure monitoring requirements, if deemed appropriate based on protection of public health, safety, and the environment.
- 2. Except as modified by the conditions of this approval, Yankee shall also comply with the requirements of: MassDEP's Corrective Action Design (CAD) and Closure Certification permit approvals for the SCFA; MassDEP's June 19, 2007 Revised Beneficial Use Determination (BUD) for Structures permit approval; and the MassDEP's review of the Final BWSC Phase II Assessment for the YNPS site, including the Final Risk Assessment.
- 3. All environmental monitoring shall be performed by a qualified, independent consultant experienced in the solid waste field, in accordance with 310 CMR 19.132 and MassDEP's publication Standard References for Monitoring Wells (WSC-310-91).
- 4. Groundwater monitoring wells shall be sampled in accordance with the procedures outlined in the MassDEP's publication <u>Standard References for Monitoring Wells</u> (WSC-310-91). Sampling can alternatively be performed in accordance with the USEPA publication Low

- Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells, dated July 30, 1996.
- 5. Quality Assurance/Quality Control Plan (QA/QC) protocols for all environmental monitoring should generally follow those outlined in the MassDEP's LAC Manual and Standard References manuals.
- 6. Groundwater monitoring wells MW-105B, MW-107C, CFW-1, CFW-5, & CFW-6, and surface water locations SW-1, SW-4, SW-5 and Sherman Spring shall be sampled <u>during 2016, 2021, 2026, 2031, and 2036</u>. Monitoring wells MW-105B, MW-107C, CFW-1, CFW-5, & CFW-6 shall be protected from damage, and shall be visually inspected and equipped with a new lock during each monitoring event.
- 7. Groundwater samples from monitoring wells MW-105B and MW-107C shall be analyzed for tritium, as a Hard-to-Detect (HTD) radionuclide.
- 8. Groundwater samples from monitoring wells CFW-1, CFW-5, and CFW-6 shall be analyzed for dissolved oxygen, oxidation/reduction potential, specific conductance, temperature and turbidity (as field parameters); and alkalinity, calcium, iron, manganese, and chemical oxygen demand (as laboratory parameters).
- 9. Surface water samples from Sherman Spring shall be analyzed for Dissolved RCRA 8 metals, volatile organic compounds (VOCs) by EPA Method 8260, radionuclides by gamma spectroscopy, and also for the HTD radionuclides tritium and Sr-90. Radiological analyses by gamma spectroscopy shall at a minimum quantify the radionuclides Ag-108m, Cs-134, Cs-137, Co-60, Eu-152, Eu-154, Eu-155, Nb-94, and Sb-125. In addition, any other plant-related radionuclides detected by gamma spectroscopy above MDAs shall be reported as part of these analyses.
- Surface water samples from surface water locations SW-1, SW-4, and SW-5 shall be analyzed for: dissolved oxygen, oxidation/reduction potential, specific conductance, temperature and turbidity (as field parameters); and Dissolved RCRA 8 metals, VOCs by EPA Method 8260, alkalinity, calcium, iron, manganese, and chemical oxygen demand (as laboratory parameters).
- 11. All VOC analyses by EPA Method 8260 shall be performed as outlined in 310 CMR 19.132(h)(1-3), specifically methyl ethyl ketone, methyl isobutyl ketone, acetone, and 1,4-dioxane shall be included, and unknown peaks having intensities greater than 5 times the background intensity shall be identified (Tentatively Identified Compounds, or TICs). As outlined at 310 CMR 19.132(i), detection limits for all parameters tested in groundwater samples shall be at or below the Massachusetts Drinking Water Standards & Guidelines (Maximum Contaminant Levels, or MCLs), including the 1,4-dioxane MCL of 0.3 micrograms/liter (ug/l).
- 12. Yankee shall submit the results of all groundwater monitoring data to MassDEP within 45 days of the date of sampling.
- 13. Yankee shall ensure that certified, third-party operations & maintenance (O&M) inspections of the BUD Fill Area and SCFA are completed once every two years, in accordance with 310 CMR 19.018, and that third-party inspection reports are submitted to MassDEP within 30 days of the date of the inspection.

- 14. MassDEP reserves the right to modify this approval at any time, based on its review of the results of monitoring data, or should MassDEP otherwise determine that additional environmental monitoring is required to protect public health, safety or the environment.
- 15. MassDEP and its agents and employees shall have the right to enter upon the YNPS site at reasonable times and with reasonable notice, to inspect the groundwater monitoring network, and to otherwise monitor compliance with this Approval and other MassDEP environmental laws and regulations.

Pursuant to 310 CMR 19.033(5), any person aggrieved by the issuance of this approval, except as provided for under 310 CMR 19.033(4)(b), may file an appeal for judicial review of said decision in accordance with the provisions of M.G.L. c. 111, s. 150A and C. 30A not later than thirty [30] days following the date of issuance of this decision. The standing of a person to file an appeal and the procedures for filing such appeal shall be governed by the provisions of M.G.L. c. 30 A. Unless the person requesting an appeal requests and is granted a stay of the terms and conditions of the permit by a court of competent jurisdiction, the final permit decision shall be effective in accordance with 310 CMR 19.033(3).

Any aggrieved person intending to appeal the decision to the superior court shall first provide notice to the MassDEP of said intention to commence such action. Said Notice of Intention shall include the MassDEP File Number (16-253-009) and shall identify with particularity the issues and reason(s) why it is believed the approval decision was not proper. Such notice shall be provided to the Office of General Counsel of the MassDEP and the Regional Director for the regional office which made the decision, at least five days prior to the filing of an appeal. The appropriate addresses to which to send such notices are:

General Counsel

MassDEP of Environmental Protection
One Winter Street-Third floor
Boston, MA 02108

&

Regional Director
MassDEP of Environmental Protection
436 Dwight Street - 5th Floor
Springfield, MA 01103

No allegation shall be made in any judicial appeal of this decision unless the matter complained of was raised at the appropriate point in the administrative review procedures established in 310 CMR 19.000, provided that a matter may be raised upon a showing that it is material and that it was not reasonably possible with due diligence to have been raised during such procedures or that matter sought to be raised is of critical importance to the public health or environmental impact of the permitted activity.

The MassDEP reserves the right to require additional investigatory or remedial work at the YNPS site, including alternative remedial measures, if continued monitoring results indicate such a need. This approval pertains only to the solid waste management aspects of the proposal and does not negate the responsibilities of the owners or operators to comply with any other local, state or federal laws and regulations now or in the future.

Yankee Nuclear Power Station - Rowe Monitoring Modification Permit Approval

If you have any questions concerning this matter, please contact the undersigned of this office, at #413-755-2280, or Larry Hanson of this office, at #413-755-2287.

Sincerely,

Daniel Hall Section Chief

Solid Waste Management

DH/LGH/lgh

Word:yankeemonmod216

Certified Mail, #7011 0470 0001 8408 0225

cc.

Rowe Board of Selectmen

Rowe Board of Health

MA DPH - Radiation Control Program - Michael Whalen

USEPA, Region 1

NRC

DEP/WERO - Michael Gorski, David Howland, Eva Tor

Franklin Regional Council of Governments Citizens Awareness Network – Deborah Katz

APPENDIX B

FIELD DATA RECORDS – MARCH 2016

GROUND WATER SAMPLING FIELD LOG (SAMPLE)

Form 1

PARE 1 OF 2

Sample Location . MW-105B Well Designation MW-105B

Sampling Team Ton Longuey Sample Period March 2016

Date 3-23-16 Time 12:50-15:30

Depth to Mid Screen (ft) Diameter of Well 2.0 Measuring Point TOR (in) 75.52 21.87TD Well Depth (from measuring point) (D) (ft) 21,87 75.520 Depth to water (DTW) (ft) 53.65 Length of Water Column (LWC) (ft) (LWC=D-DTW) 8.58 Volume of Water in Well (VW) gal Conversion Factor 0.16 25.75 Volume of Purge (VTP) (VTP = $VW \times 3$) (gal)

Pump Serial Number 9982 SET AT ~65.5 BTOR

Water Quality Monitor Serial Number Mo15-13/10E 100 323 YSI 556 MPS

Analyses Requested TRITIUM (250 mL, AG, Nme) L5C/HARD TO DETECT

NTM METER: HACH 2100Q/M024-37

Previous Final Readings: pH1.43 Cond o.65 Turb 1.60 DO 0.39 Temp 6.16 ORP 11.4 DTW 29.46 Flow 100 ml/min.

13:05 STORE PURCHE 13:15 AT 100 ml/min. Tate

WATER QUALITY PARAMETERS (SAMPLE)

	13	1:65 STAN	i purai:		PRIEZOFZ				
	Sample I	Round M	ARCH 201		,				
		3-,	73-16		Current	Readings			
	Time (min)	рН	Cond mS/cm	Turb (NTU)	D.O (mg/L)	Temp (°C)	ORP (mv)	DTW (feet)	Comments
	0	+/- 0.1 std. unit	+/- 3%	+/- 10% NA <10NTU	+/-10%	+/- 1 E	+/-10 mv		porace RASE mymin.
13:20	13:20	8.35	0602	12.7	7.94	10.68	-85.1	24.29	100 ml/min.
	131025	8.36	0.614	11.7	5.32	10.42	-87.1	24,60	100
	13:150	8.37	0.619	14.8	3.59	10.46	-91.9	24.97	100
	13.205	8.32	0.621	9.97	2.98	10.36	-87.5	25.31	100
	13:40	8.76	0.623	7.69	2.61	10.29	-83.8	25.61	100
	13345	8.20	0.621	5.35	2.28	10.44	-82.0	25.90	100
	13350	8.17	0.618	3.68	2.06	10.60	-82.7	26.15	100
	13:485	8.09	0.616	3.09	1.91	10.63	-81.8	26.35	100
14:00	14450	8.08	0.613	2.37	1.81	10.78	-83.6	26.51	100
	14:585	8.04	0.612	1.92	1.70	10.88	-85.3	26.63	100
	14:5510	8.03	0.610	1.481.61	1.48	10.78	-86.1	24.78	100 ml/min. punge Rat
	14:6015	8.01	0.609	1.51	1.36	10.70	-83.1	26.90	100
	14:20	8.00	0.609	1.42	1.28	10.63	-81.3	26.90	100
	14:765	8.00	0.609	1.22	1.22	10.49	-78.4	27.10	100
14:30	14:7530	8.00	6.607	0.98	1.19	10.56	- 79.2	27.15	100
	14: 8035	7.99	0,607	0.77	1.14	10.55	- 75.7	27.25	100
	14:8540	8.01	0.606	0.82	1.12	10.48	-74.2	27.32	100
	14: 9045	7.98	0.605	0.61	1.09	10.40	-70.9	27.42	100
	14:9550	7.98	0.605	0.83	1.05	10.40	- 70.4	27.44	100
	14:10055	7.98	0.604	6.87	1.02	10.40	-71.6	27.50	100
	1510500		0.605	0.72	1.00	10.41	- 68.6	27.56	100
	15 11005	7.97	0.605	0.52	0.96	10.44	-68.9	27.60	100
	15 115 10	7.96	0.605	0.58	0.92	10.44	-68.9	27.64	100
	15 12015	7.97	0.605	0.46	0.88	10.52	-67.8	27.68	100
	15 12520	7.95	0.605	0.66	0,85	10.52	-66.1	27.70	lto
	15 13025	7.96	0.605	0.56	0.84	10.51	-67.4	17.70	100
	15 13530	Collect	SAmple						-
	140	_							**
	145			BOTTLE TI	NE OF 15:	30			
	150								
	155								

Page 13 of 40

$\frac{\text{GROUND WATER SAMPLING FIELD LOG (SAMPLE)}}{\text{Form 1}}$

Sample Location MW-107C	Well D	esignation M	W-107	<u></u>	
Sampling Team RENE AUBE	Sample	Period M.	ARCH 2	016	
Date 3/23/16	Time_	13-40	1340-	1615	
•		***************************************			
		Depth to Mid	Screen	· ·	(ft)
Measuring Point FOR		Diamet	ter of Well_	2,0	(in)
Well Depth (from measuring point) (D)			4:	2,81	(ft)
Depth to water (DTW)			22	2.83	(ft)
Length of Water Column (LWC)		19,98	(ft)	(LWC=D-	DTW)
Volume of Water in Well (VW)		3,20	gal	Conv	ersion
				Facto	018,16
Volume of Purge (VTP) (VTP = VW x 3	3)	9.60	(gal)) .	
		. ,			
			2		· · · · · · · · · · · · · · · · · · ·
					
At Time of Measurements:					
Color CLEAR		Odor	NONE		
Total volume purged 3.53		Duration of	purging /	36 MIN	J
Purging method BLADDER RUMP	3	Did well go		790	
Weather conditions MIXED SUN + C					
) (
	·				
Pump Serial Number #9978					
Water Quality Monitor Serial Number	MOI	5-10		-	
Analyses Requested TRITIUM					
Previous Final Readings: pH612 Cond,42	arrata 2 1	(4DO '7/ Tame	/ //ODDES	PROTYTY IN	E TOTAL

WATER QUALITY PARAMETERS (SAMPLE)

Form 2

	Form 2									
	Sample R	ound MA	RCH 20	016		MW-107C				
		3/23/16			Current Readings			1340-1615		
	Time (min)	pĤ	Cond mS/cm	Turb (NTU)	D.O (mg/L)	Temp (°C)	ORP (mv)	DTW (feet)		Comments
	3/23/16	+/- 0.1 std. unit	'+/- 3%	+/- 10% NA <10NTU	+/-10%	+/- 1 E	+/-10 mv		1350	ME/MN PURGE
	5								ī	277770
1400	10	5.36	0.450	3.46	1.76	11,73	187,0	24.91		
1405	15	5.41	0.450		1.24	11.81	167.5		-	
1410	20	5.55	0,450	_	1.05	11,50	161.4		-+	
1415	25	6.75	0.448	2.65	0.95	11.24			1	
1420	30	6.79	0.448	2000 - 2000	0,90	11.05		26.68		
1425	35	6.81	0.446	3.06	0.87	10.95	1	27.01	1	
1430		6.82	0,446		0.87	10.84				
1435			0.445		0.82	10.84				
1440		6.86	0.445		0.80	10:75	84.2			
1443		6.87		3,03	0.79	10,63	80.6			
1450	60	6.87		2.88	0,76	10.61		28,23	1	
1453	65	6.89	0,441	2.50	0.75	10,56		28.41		
1500	> 70	6.91	0.440		0.73	10,57		28,57		
1500		6,91	0.439		0.70	10.69				
1510		6,90	0.438		0.69	10.67		28.80		
1515	85	6.30	0.438	1,70	0.68	10.63		28,91		
1520	90	6.77	0.437	1.66	0.69	10,60	-	29.00		
1525	95		0.437	1.63	0.69	10,58	57.9	29.11		
133c	100	6.93	0.436	1.15	0.66		56.1	29.19		
1593	105	6.93	0.434		0.63		54.8			
1540	~~~	6,94	0.433		0.61	10.34				
1545	115		0.433		0.61	10.29				
1550	120		0.432		0.60	10.30				
1553	125					10.28				
1600	130		0.431			10,26				
1605	135		0.431		0.59	10.25				
1605 1606	140			MPLES		/		-11/3	V	
,	145			1						
	150	,								
	155						*********			
L			1	I		-1		1.	1	

$\underline{\textbf{GROUND WATER SAMPLING FIELD LOG (SAMPLE)}}$

For	<u>rm 1</u>
Sample Location CFW- Well I	Designation CFW-1
Sampling Team / ZENE AUBE Sampl	e Period MARCH 2016
Date 3/24/16 Time	0945 - 1545
Measuring Point	Depth to Mid Screen
At Time of Measurements: Color	Odor NONE
Total volume purged DRY	Duration of purging NA
Purging method GEORIMO	Did well go dry? YES
Weather conditions MIX SUN + CLOUDS,	,
Pump Serial Number 5008-43 Water Quality Monitor Serial Number MC Analyses Requested C4, FE, MN-ALKALI Previous Final Readings: pH6.75Cond2048 Turb3	VITY-COD

WATER QUALITY PARAMETERS

Form 2

					FOI	<u>m 2</u>				
	Sample	Round /	MARCH	2016	CFW-1					
	3/24/16				Current	Readings		0945-1545		
	Time (min)	pН	Cond mS/cm	Turb (NTU)	D.O (mg/L)	Temp (°C)	ORP (mv)	DTW (feet)	.Comments	
	3/24/16	+/- 0.1 std.unit	+/- 3%	+/- 10% NA <10NTU	+/-10%	+/- 1 E	+/-10 mv		1000 BEGIN PUNG. 150 ML/MN *	
005	-5	7,86	0,028	10.2	42.38	4.14	132.1	4,60		
010	10	7.78	0,026	12.3	25.42	3.79	128.8	5.16		
015	15	7.75	0,025	14.8	14.22	3,55	120.6	5.72		
020	20	7.83	0.030	59.0	9.35	3.30	100,5	6,28		
025	25	7.90	0,031	90,1	6.93	3,31	79,9	6.84		
030	30	7.87	0.029	177	6,04	3.43	71.6	7.40		
035	35	7.82	0.028	323	5,80	3.55	76.8	8,08		
040	40	7.76	0.026	596	5.62	3.78	86.7	8.85	V	
042	45	WELL	Puna	ED DR	y. 57	OP PU.	MD, L	ET		
	50	WELL		4ARG	/	, ,	, , , , , , ,			
535	55	•		AMPLE	1		5			
•	60									
	65									
	70									
	75	***************************************								
	80									
	85									
	90									
	95						***************************************			
	100			3	_			· · · · · ·		
	105				· · ·		-			
	110							 	1 1	
	115								4	
	120									

GROUND WATER SA	AMPLING FIELD LOG (SAMPLE)
	Form 1
Sample Location CFW-5	Well Designation CFW-5
Sampling Team RENE AUBE	Sample Period MARCH 2016
Date 3/24/16	Time 1115-1300
	Depth to Mid Screen(ft)
Measuring Point Vor	Diameter of Well 2,0 (in)
Well Depth (from measuring point) (D)	8,10 (ft)
Depth to water (DTW)	<u>4.69</u> (ft)
Length of Water Column (LWC)	
Volume of Water in Well (VW)	0.55 gal Conversion
	Factor 2.16
Volume of Purge (VTP) (VTP = VW x 3)

Odor NONE
Duration of purging 61 MN5
Did well go dry?
ADT, COLD, CALM

Pump Serial Number 5008-43	
Water Quality Monitor Serial Number MO15-13	
Analyses Requested (A, FE, MN - ALKALINITY - COD	

Previous Final Readings: pH635Cond,337Turb84DO0,48Temp2,59ORP10,8DTW527Flow165

WATER QUALITY PARAMETERS (SAMPLE)

Form 2

				a a	. <u>Fo</u> 1	<u>m 2</u> .			:
	Sample R	ound. N	PARCH	1 201	6	CFW-5			
	,	31	124/16		Current Readings //15 - 13				200
	Time (min)	pН	Cond mS/cm	Turb (NTU)	D.O (mg/L)	Temp (°C)	ORP (mv)	DT'W (feet)	Comments
	3/24/16	+/- 0.1 std. unit	+/- 3%	+/- 10% NA <10NTU	+/-10%	+/- 1 E	+/-10 mv	₹	1135 BEGIN PURGE 140 MYMN *
	5					1			1
1145	10	7.69	0,217	48,9	7.29	5.61	-10.3	4,94	
1150	. 15	7.72	0,219	39.0	3,43	5.62	-9.6	4.97	
1155	20	7.72	0.221	28.7	2.83	5,58	-8.2		
1200	25	7.70	0,223	25.0	2.94	5.51	-7.3	4.98	
1205	30	7.68	0,225	22.2	3,56	5,53	-5.8	4.98	
1210	35	7.66	0.227	19.6	4.11	5,54	-3.7	4.98	
1215	40		0,230	15.5	4.25	5,40	-2.9	4.98	
1220	45	7,64	0,230	11.3	4.27	5.28	-1.1	4.98	
1225	50	7,62	0,231	8,25	4.19	5,22	-0,6	4.98	
1230	55	7.62	0.232	7.00	4.14	5,23	0.1	4.98	
1235	60	7.61	0.232	6.81	4.11	5.22	0.7	4.98	V
1236	65	Coile	CT SA	MPLES	, DUP,	M5, N	15D		
•	70			,		,			
	75								
	80					_			
	. 85								
	90					-			
	95					,			
	100		•						
	105								
	110				2				
	115								
	120								
	125			***************************************					
	130								
	135								
	140								
	145								
	150								
	155								

* LOWEST POSSIBLE PURGE RATE,

	PLING FIELD LOG (SAMPLE) Form 1
,	×
	1 Designation CFW-6
Sampling Team RENE AUBE Sam	
Date 3/24/16 Tim	ne 1330-1510
	Depth to Mid Screen (ft)
Measuring Point	Diameter of Well 2,0 (in)
Well Depth (from measuring point) (D)	<u>8,42</u> (ft)
Depth to water (DTW)	
Length of Water Column (LWC)	3.17 (ft) (LWC=D-DTW)
Volume of Water in Well (VW)	
	Factor 216
Volume of Purge (VTP) (VTP = VW x 3)	/,53 (gal)
,	
At Time of Measurements:	
Color CLEAR	Odor NONE
Total volume purged 1,99	Duration of purging 57 MAS
Purging method GEOPUMP	Did well go dry?
Weather conditions/Mix Sun-Clouds, Co	
Pump Serial Number 5008-43	
Water Quality Monitor Serial Number	015-13
Analyses Requested (A, FE, MN - ALWALIN	

Previous Final Readings: pH5,95CondO,226 urbl, 37DOO,79Temp3,59ORP48.6DTW7,53Flow180

WATER QUALITY PARAMETERS (SAMPLE)

Form 2

	Form Z									
	Sample R	Cound M.	ARCH ;	2016	CFW-6					
	3	3/24/16			Current Readings 1330 - 1510					
	Time (min)	pН	Cond mS/cm	Turb (NTU)	D.O (mg/L)	Temp (°C)	ORP (my)	DTW (feet)		Comments
	0	+/- 0.1 std. unit	+/~ 3%	+/- 10% NA <10NTU	+/-10%	+/- 1 E	+/-10 mv		1350	BEGIN PURGE ML/MN *
	5	2744 41112		20112					150	MICHAIN X
1400	10	6.84	0,079	6.24	9.93	5.76	132.5	560		
1405	15		0.084	5.00	7.06	5.70	1193	5,67		
1410	20	6,89	0,085	2.96	5.72	5.72	115.2	5.71		
1415	25	6.89	0,087	2,25	4.79	5.84	113.8	5.74		
1420		6.89	0,088	1.84	4.18	5.88	113,4	5.75		
1425		6,90	0,088		3.70	5.98	112.9	5.76		
1430	40	6.89	0,088	1.63	3.34	6.06	113.3	5,76	-	,
1435	45	6.89	0.088	1.59	3,10	6.03	115.7	5.76		
1440	- 50	6.88	0,088	1.55	3.12	6.00	116.6		V	
1441	55		CT SA.		7112	0	770.0	21/6		
	60	CO CCC	2010	115 000						
	65	2								
	70		1				<u> </u>	1	<u> </u>	
	75	-					 	<u> </u>		
	80			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
- E	85								 	
	90								 	
	95								-	
	100									
	105									
	110									
	115									
	120									
	125							 	1	
	130							-		
	135									
	140									
	145						·			
	150									
3	155			-						
				L						

* LOWEST POSSIBLE PURGE RATE

P. C.	ING FIELD LOG (SAMPLE)
For	
Sample Location SW-1 Well D	Designation SW-1
	Period MARCH 2016
Date 3-24-16 Time	09:30-210:30/Sample @ 10:00
	Depth to Mid Screen(ft)
Measuring Point	Diameter of Well(in)
Well Depth (from measuring point) (D)	(ft)
Depth to water (DTW)	(ft)
Length of Water Column (LWC)	(ft) (LWC=D-DTW)
Depth to water (DTW) Length of Water Column (LWC) Volume of Water in Well (VW)	gal Conversion
	Factor
Volume of Purge (VPP) (VTP = VW x 3)	(gal)
At Time of Measurements:	*
ColorCLEAR	Odor None
Total volume purged NA	Duration of purging NA
Purging method NA	Duration of purging NA Did well go dry?
Weather conditions Claudy 30's brangy	
3, 3 j	
	-
Pump Serial Number	
Water Quality Monitor Serial Number YSI 556	(10E 100326) HACH 2100Q (MOZY 32)
Analyses Requested Vas 1-4-Dioxare, Metals	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(1)
Previous Final Readings: pH 63 Cond 0.03 Turb 6.6	6 DO OM Temp 10.53 ORP 99.7 DTW MAFlow

SW-1

WATER QUALITY PARAMETERS (SAMPLE)

240

				<u>Fo</u>	<u>rm 2</u>			1
Sample R	ound	3-24-16		4				
				Current	Readings			
Time (min)	pН	Cond mS/cm	Turb (NTU)	D.O (mg/L)	Temp (°C)	ORP (mv)	DTW (feet)	Comments
0	+/- 0.1 std. unit	+/- 3%	+/- 10% NA <10NTU	+/-10%	+/- 1 E	+/-10 mv		
5/0:0	0 7.1	0.038	0.87	14.3	2.83	207	-	Sample @ 10:00
10 ~								.8
15	_							
20							- a	
25								
30								
35								v
40		4						
45				V	/			
50					A			
55								
60				07	×0.			
65						1		
70					X	3-	24-16	
75						1		
80			,					
85				-				
90								
95								
100								
105								
110								
115								
120								
125								
130					·	-		
135								
140								\
145								
150								
155								

Page 13 of 40

GROUND WATER SAMPLING FIELD LOG (SAMPLE) Form 1

PAREL 00 2

Sample Location 5w-4	Well Designation 5w-4
Sample Location SW-4 Sampling Team Ton Longuey	Sample Period March 2016
	Time 10:30 > 11:20 5 Ample @ 11:00
	Depth to Mid Screen (ft)
Measuring Point	Diameter of Well(in)
Well Depth (from measuring point) (D)	(ft)
Depth to water (DTW) Length of Water Column (LWC) Volume of Water in Well (VW)	(ft)
Length of Water Column (LWC)	(ft) (LWC=D-DTW)
Volume of Water in Well (VW)	gal Conversion
	Factor
Volume of Purge (VTP) (VTP = VW x 3)	
,	,
At Time of Measurements:	. ^
Color_ CUEAR	Odor_ None
Total volume purged NA	Duration of purging NA
Purging method	
Weather conditions PTLy Sung LOW 40'S	
Pump Serial Number NA	

Previous Final Readings: pH 125 Cond out Turb 39 DO 9.85 Temp 0.21 ORP 105.3 DTW 1/4 Flow

Water Quality Monitor Serial Number 455 556 (10E 100 326) HACH 21 00 Q (MO24-32)

Analyses Requested VOCs, 1.4-DIOXANE Metals RCRAS Metals (D), Alkacinity COD

Rev. 0

WATER QUALITY PARAMETERS (SAMPLE)

PAGE Z 162

Form 2

SW-4

				<u> F0.</u>	m Z			,
Sample R	ound N	Varch 201	6					
		3-24-1	6	Current	Readings			
Time (min)	рН	Cond mS/cm	Turb (NTU)	D.O (mg/L)	Temp (°C)	ORP (mv)	DTW (feet)	Comments
0	+/- 0.1 std. unit	+/- 3%	+/- 10% NA <10NTU	+/-10%	+/- 1 E	+/-10 mv		
11:005	6.13	0.026	1.61	13.80	3.44	144.1	NA	COLLECT Sample
10								. 0
15								
20			*					
25	`							
30								
35								
40								
45				(*)				
50				0				8
55			. 1	1/\ 1				
60			X	J.				
65				3/24/	16			
70				1,				
75 .						-		
80								
85			-					
90								
95								
100								
105			9	2.4				
110								
115								
120								
125								
130							1	
135	100							
140								
145							-	
150			2.7					
155								
								\

$\frac{\textbf{GROUND WATER SAMPLING FIELD LOG (SAMPLE)}}{Form \ 1}$

Page 1 0/2

	1011		
Sample Location SW-S	_Well De	esignation SW-5	
Sample Location SW-5 Sampling Team Ton Longley	Sample	Period March 2016	
Date 3-24-16	Time_	11:20- 12:15	Sample 11:50
			The state of the s
		Depth to Mid Screen	(ft)
Measuring Point		Diameter of Well	(in)
Well Depth (from measuring point) (D)		· ·	(ft)
Depth to water (DTW)	K /		(ft)
Length of Water Column (LWC)	9	(ft) (L'	WC=D-DTW)
Volume of Water in Well (VW)	3/24/16	gal	Conversion
	,		Factor
Volume of Purge (VTP) (VTP = VW x 3	3) .	(gal)	
At Time of Measurements: Color		Odor None Duration of purging None Did well go dry? None	14-
	2 7 7		
Pump Serial Number N/A			
Water Quality Monitor Serial Number 7:	SF 556	(106 100 326) HACH 21000	(MOZ4-32)
Analyses Requested VOCs, 1,4-DioxANG,			
Previous Final Readings: pH 675 Conde.025	Turb 0,2	DO 3-47 Tempo.64 ORP 74.8 D	TWFlow

Rev. 0

5W-5

WATER QUALITY PARAMETERS (SAMPLE)

page 2 of 2

				<u>For</u>	<u>rm 2</u>			1 80
Sample F	Round N	Vard- 20	16					
		3-74-16	•	Current	Readings			47
Time (min)	рН	Cond mS/cm	Turb (NTU)	D.O (mg/L)	Temp (°C)	ORP (mv)	DTW (feet)	Comments
0	+/- 0.1 std. unit	+/- 3%	+/- 10% NA <10NTU	+/-10%	+/- 1 E	+/-10 mv		
11:30	5.99	0.020	0.82	11.48	3.57	164.5	NA	11:50 Sangel
10			ð					. 0
15								
20								
25								
30								
35								
40								
45				2	e. I			
50			\times	01				
55				78		-		
60				1				
65				3/24/	16			
70				, ,		9		
75							-	
80								
85						=		
90								
95								
100				•				
105				1.				-
110					3		\	
115								
120								
125					67			1
130								
135								
140								
145								
150								
155						=	_	

FIELD INSTRUMENTATION CALI	
PROJECT NAME: e Nuclear Power Station, Rowe, Massac	TASK NO: 0.03 DATE: 3-23-16
PROJECT NUMBER: 3617147318	MACTEC CREW:
PROJECT LOCATION: ROWE, MA	SAMPLER NAME: Thoms D. Langley
WEATHER CONDITIONS (AM): Claude, 50's	SAMPLER SIGNATURE: Thum I. The
WEATHER CONDITIONS (PM): P724. Sum 50's	CHECKED BY: DATE:
MULTI-PARAMETER WATER QUALITY METER	
METER TYPE 451 556 MPS AM CALIBRATION	POST CALIBRATION CHECK
MODEL NO. 556 MP3 Start Time 0845 /End Time 093	Start Time/End Time
UNIT ID NOMOI5-10_	C/ V-1 N/
Units Standard Meter *Acceptance	A 2004 CONTRACTOR CONT
Value Value Criteria (AM	
pH (4) SU 4.0 4.0 +/- 0.1 pH Unit	
pH (7) SU 7.0 +/- 0.1 pH Unit	
pH (10) SU 10.0 +/- 0.1 pH Unit	ts 2 - 3
Redox +/- mV 240 +/- 10 mV	240 302 +/- 10 mV
Conductivity mS/cm 1.413	andard 1.413 <u>/. 426</u> +/- 5% of standard
DO (saturated) % 100 93 +/- 2% of stand	
Temp. — DO (saturated) $mg/L^{1 \text{ (see Chart 1)}}$ 9.6 +/- 0.2 mg/L	8.7 7.8 +/- 0.5 mg/L of
O (<0.1) mg/L <0.1 <0.5 mg/L	standard
Temperature °C /3.5	19.9
Baro. Press. mmHg 737.3	730.5
TURBIDITY METER METER TYPE M	
METER TYPE / // Value Value Walue Value Va	value value Cineria (134)
UNIT ID NO. 1034 - 32 <0.1 Standard NTU <0.1 9.6	\$9 ≤0.1 /0.1 +/- 0.3 NTU of stan.
20 Standard NTU 20	
We will be a second of the sec	
	6 800 <u>774</u> +/- 5% of standard
PHOTOIONIZATION DETECTOR METER TYPE Background ppmv <0.1	<0.1 within 5 ppmv of BG
METER TYPE Background ppmv <0.1	within 3 ppinv of BO
UNIT ID NO. Span Gas ppmv 100	+/- 10% of standard
O ₂ -LEL 4 GAS METER	
	50 +/- 10% of standard
	20.9 +/- 10% of standard
UNIT ID NO. H ₂ S ppmv 25	
CO ppmv 50	50 +/- 10% of standard
OTHER METER	
METER TYPE	See Notes Below
MODEL NO.	for Additional
UNIT JD-NO	Information
Equipment calibrated within the Acceptance Criteria specified for each of the parameters listed	above. (WAM.)
Equipment (not) calibrated within the Acceptance Criteria specified for each of the parameters	listed above**. (P.M./post-cal. cleck)
MATERIALS RECORD	Cal. Standard Lot Number Exp. Date
	H (4) 5GL 573 (2/14)
The state of the s	H(7) 5GL 345 13/17
	(10)
	ORP 8540 1/30
Sample Preservatives Source: Conduct	
Disposable Filter Type: 0.45µm cellulose <0.1 Turb. S	
Calibration Fluids / Standard Source: 20 Turb. S	
- DO Calibration Fluid (<0.1 mg/L) Portland FOS 100 Turb. S	
- Other 800 Turb. S	
- Other PID Span	
- Other O ₂ -LEL Span	
	Other
NOTES: 0 + and 1 - all a star and for all	1. Delica à Da
NOTES: Post calibration check criteria not met for pH	4.0 Kessox, & DU

* = Unless otherwise noted, calibration procedures and acceptance criteria are in general accordance with USEPA Region 1 SOPs for Field Instrument Calibration (EQASOP-FieldCalibrat) and Low Stress Purging and

Sampling (EQASOP-GW001), each dated 1/19/2010. Additional acceptance criteria obtained from instrument specific manufacturer recommendations.

** = If meter reading is not within acceptance criteria, clean/replace probe and re-calibrate, or use calibrated back-up meter if available. If project requirements necessitate use of the instrument, clearly document any deviations from acceptance criteria on all data sheets and log book entries.

1 = DO Saturated standard value is calculated based on Oxygen Solubility at Indicated Pressure Chart from the USEPA Region 1 SOP for Field Instrument Calibration (EQASOP-FieldCalibrat), dated 1/19/2010.

FIELD INSTRUMENT CALIBRATION RECORD

FIELD INSTRUMENTATION CALIBRA			
PROJECT NAME: YANKE Nuclear Power Station, Rowe, Massac	TASK NO:	0.03	DATE: 3/23/16
PROJECT NUMBER: 3617147318	MACTEC CREW;	Mary and Mary and American	
PROJECT LOCATION:	SAMPLER NAME	? TEN	IE AUBE
WEATHER CONDITIONS (AM): MIX SUN+CLOUDS, Cool DRV	SAMPLER SIGNA	ATURE: 16	One Aula
WEATHER CONDITIONS (AM): MIX SUN+CLOUDS, Cool, DRY WEATHER CONDITIONS (PM):	CHECKED BY:	r =	DATE:
MULTI-PARAMETER WATER QUALITY METER	T		
METER TYPE 151			2"
ANI CALIBRATION	POST	CALIBRATI	ON CHECK
MODEL NO. 556 MPS Start Time 0830/End Time 0905	Start Time 16	645 /EI	nd Time 1705
UNIT ID NO. 15-13			
Units Standard Meter *Acceptance	Standard	Meter	*Acceptance
Value Value Criteria (AM)	Value	Value	Criteria (PM)
pH (4) SU 4.0 4.0 +/- 0.1 pH Units			
pH (7) SU 7.0 7.0 +/- 0.1 pH Units	7.0	6.76	+/- 0.3 pH Units
pH (10) SU 10.0 WA +/- 0.1 pH Units			
Redox +/- mV 240 247 247.0 +/- 10 mV	240	238	+/- 10 mV
the state of the s	1.413	1,402	+/- 5% of standard
- Day 1.1	1.415	11702	T/- 376 OI Standard
DO (saturated) % 100 98.4 +/- 2% of standard			V MARKET TO THE
DO (saturated) mg/L ¹ (see Chart 1) 9,43 4,37 +/-0.2 mg/L	8.73	4,74	+/- 0.5 mg/L of
DO (<0.1) mg/L <0.1 NA < 0.5 mg/L			standard
Temperature °C 16.00		20.38	
Baro, Press. mmHg 730,6	1.	733,9	
	54 7		4.1
TURBIDITY METER Units Standard Meter	Standard	Meter	*Acceptance
METER TYPE HACH Value Value	Value	Value	Criteria (PM)
MODEL NO. 2/608	-0 -m- 2 -	4 43	
UNIT ID NO. 1024-37 <0.1 Standard NTU0.17 9.81	50.770	4.83	+/- 0.3 NTU of stan.
20 Standard NTU 20 20.3	20	20.7	+/- 5% of standard
100 Standard NTU 100 101	100	102	+/- 5% of standard
800 Standard NTU 800 Sol	800	793	+/- 5% of standard
PHOTOIONIZATION DETECTOR	-		
METER TYPE Background ppmv <0.1	<0.1		within 5 ppmy of BG
MODEL NO.			h h
UNIT ID NO. Span Gas ppmv ·100	100		+/- 10% of standard
O ₂ -LEL 4 GAS METER			
METER TYPE Methane % 50	50		+/- 10% of standard
	20.9		+/- 10% of standard
	200	-	
UNIT ID NO. H ₂ S ppmv 25	25		+/- 10% of standard
CO ppmv 50	50		+/- 10% of standard
OTHER METER			
METER TYPE			0 11 2 2 1
MODEL NO.			See Notes Below
UNIT ID NO,	-		for Additional
ONIT ID NO.	Prisonania in the second		Information
Equipment calibrated within the Acceptance Criteria specified for each of the parameters listed above.	FAUCO	DM CAL	-CHECK DO.
Equipment (ant) calibrated within the Acceptance Criteria specified for each of the parameters listed above. Equipment (not) calibrated within the Acceptance Criteria specified for each of the parameters listed above.	ove**. FAILED	THE CHE	- UTECK VO,
	Cal. Standard Lot.	Number	Exp. Date
pH (4)	5GL345	•	12-17
Deionized Water Source: Portland FOS pH (7)	501573		12-17
Lot#/Date Produced: pH (10)	NA		NA
Trip Blank Source: ORP	7760		6-19
Sample Preservatives Source: Conductivity	56H100	·	8-14
Disposable Filter Type: 0.45µm cellulose	A5761	(a)	9-12
Calibration Fluids / Standard Source: 20 Turb. Stan.	A5176		10-16
- DO Calibration Fluid (<0,1 mg/L) Portland FOS 100 Turb. Stan.	45)73		9-16
- Other 800 Turb. Stan.	4529		4-12
- Other PID Span Gas	73/31	•	
- Other O ₂ -LEL Span Gas Other			,———
NOTES:			
			*

* = Unless otherwise noted, calibration procedures and acceptance criteria are in general accordance with USEPA Region 1 SOPs for Field Instrument Calibration (EQASOP-FieldCalibrat) and Low Stress Purging and Sampling (EQASOP-GW001), each dated 1/19/2010. Additional acceptance criteria obtained from instrument specific manufacturer recommendations.

** = If meter reading is not within acceptance criteria, clean/replace probe and re-calibrate, or use calibrated back-up meter if available. If project requirements necessitate use of the instrument, clearly document any deviations from acceptance criteria on all data sheets and log book entries.

1 = DO Saturated standard value is calculated based on Oxygen Solubility at Indicated Pressure Chart from the USEPA Region 1 SOP for Field Instrument Calibration (EQASOP-FieldCalibrat), dated 1/19/2010.

FIELD INSTRUMENT CALIBRATION RECORD

3/10/2016

FIELD INSTRUMENTATION CALIBRA	TION RECORD	
PROJECT NAME: e Nuclear Power Station, Rowe, Massac	TASK NO: 0.03 DATE: 3/24/1	6
PROJECT NUMBER: 3617147318	MACTEC CREW: SAMPLER NAME: TRENE AUBE	
PROJECT LOCATION: WEATHER CONDITIONS (AM): CLOUDY COLD, CALM		
WEATHER CONDITIONS (AM): COLD, CALM WEATHER CONDITIONS (PM):	SAMPLER SIGNATURE: Jone Stufe: CHECKED BY: DATE:	
MULTI-PARAMETER WATER QUALITY METER	DATE.	\dashv
METER TYPE V5/		
AM CALIBRATION	POST CALIBRATION CHECK	
UNIT ID NO. 156/13 Start Time 0745 /End Time 0820	Start Time 1700 /End Time 1720	-
Standard Meter *Acceptance	Standard Meter *Acceptance	
Units Value Value Criteria (AM)	Value Value Criteria (PM)	1
pH (4) SU 4.0 4.0 +/-0.1 pH Units		
pH (7) SU 7.0 7.00 +/-0.1 pH Units	7.0 7.78 +/- 0.3 pH Units	
pH (10) SU 10.0 •• ** +/- 0.1 pH Units	mine and is	
Redox +/- mV 240236 236.0 +/- 10 mV	240235 236.4 +/- 10 mV	
Conductivity mS/cm 1.413 /.413 +/- 0.5 % of standard	1.413 1,415 +/- 5% of standard	
DO (saturated) % 100 <u>97.2</u> +/-2% of standard		
DO (saturated) mg/L ^{1 (see Chart 1)} 8.60 8.6 +/- 0.2 mg/L	8.70 8.37 +/- 0.5 mg/L of	
DO (<0.1) mg/L <0.1 $\frac{\sqrt{A}}{10000000000000000000000000000000000$	standard	
Temperature °C 21.36	20,24	
Baro. Press. mmHg 739.1	733.7	
TURBIDITY METER METER TYPE HACH Units Standard Meter Value Value	Standard Meter *Acceptance Value Value Criteria (PM)	
THE	value value Criteria (PM)	
MODEL NO. 2100 Q UNIT ID NO. 24-37 <0.1 Standard NTU 10 ≤0.1 9,79	10 <0.7 +/- 0.3 NTU of star	1.
20 Standard NTU 20 20.1	20 20,4 +/- 5% of standard	
100 Standard NTU 100 10-2	100 +/- 5% of standard	
800 Standard NTU 800 796	800 807 +/- 5% of standard	
PHOTOIONIZATION DETECTOR	- I	
METER TYPE Background ppmv <0.1	<0.1 within 5 ppmv of B	G
MODEL NO. Span Gas pdmy 100	100 +/- 10% of standard	4
	100 47- 10% of standard	1)
O ₂ -LEL 4 GAS METER	50 +/- 10% of standar	,
METER TYPE Methane	50 +/- 10% of standar 20.9 +/- 10% of standar	- 1
	25 +/- 10% of standar	
UNIT ID NO. H ₂ S ppmv 25 CO ppmv 50	50 +/- 10% of standar	
OTHER METER	17 1070 03 0111111111	
METER TYPE		
MODEL NO.	See Notes Below	
UNIT ID NO.	for Additional	
principal designation of the second s	Information	/
Equipment calibrated within the Acceptance Criteria specified for each of the parameters listed above.		
Equipment (not) calibrated within the Acceptance Criteria specified for each of the parameters listed a	above**. FAILED DO CAL.	
MATERIALS RECORD	Cal. Standard Lot Number Exp. Date	
pH (4)	5GL345 12-17	_
Deionized Water Source: Portland FOS pH (7)	5GL573 12-17	-
Lot#/Date Produced: pH (10)	NA NA	
Trip Blank Source: ORP Sample Preservatives Source: Conductivity	7760 6-19 5614100 8-16	-
Disposable Filter Type: 0.45µm cellulose	A5161 9-16	-
Calibration Fluids / Standard Source: 20 Turb. Stan.	A5176 10-16	-
- DO Calibration Fluid (<0.1 mg/L) Portland FOS 100 Turb. Stan.	A5173 9-16	_
- Other 800 Turb. Stan.	A5169 9-16	_
- Other PID Span Gas		_ '
- Other O ₂ -LEL Span Gas		-
NOTES:		
NOTES:		
THE STATE OF THE S	ald Instrument Calibration (EOACOD El-14C-116-10 4 I Co D	nd.
* = Unless otherwise noted, calibration procedures and acceptance criteria are in general accordance with USEPA Region 1 SOPs for Fit Sampling (EQASOP-GW001), each dated 1/19/2010. Additional acceptance criteria obtained from instrument specific manufacturer reco	ommendations.	ıu
** = If meter reading is not within acceptance criteria, clean/replace probe and re-calibrate, or use calibrated back-up meter if available.		
deviations from acceptance criteria on all data sheets and log book entries. 1 = DO Saturated standard value is calculated based on Oxygen Solubility at Indicated Pressure Chart from the USEPA Region 1 SOP for	or Field Instrument Calibration (EQASOP-FieldCalibrat), dated 1/19/2010.	

FIELD INSTRUMENT CALIBRATION RECORD

PROJECT NAME: e N	Nuclear Power Station, R		ATTON	CALIDNA	TASK NO:	0.03	DATE: 3-24-16
PROJECT NUMBER:	361714731				MACTEC CREV		- long beg
PROJECT LOCATION:	POWE MA				SAMPLER NAM		ms D. Long leg
WEATHER CONDITIONS (A		Com. 4	05		SAMPLER SIGN		14.0.7.1.
WEATHER CONDITIONS (P.		,	Breez		CHECKED BY:		DATE:
MULTI-PARAMETER WAT		7		7	T		
METER TYPE 451	IER QUALITI METE	.K					
MODEL NO. 556 MA	7 5	AM CAI	IBRATI	ON and		T CALIBRATI	
UNIT ID NO. MOS-10	Start T	ime 07:35	/End T	ime 67:52	Start Time_	16:15 /En	d Time
	- Standard	Meter		*Acceptance	Standard	Meter	*Acceptance
	Units Value	Value		Criteria (AM)	Value	Value	Criteria (PM)
pH (4)	SU 4.0	4.0		0.1 pH Units			,
pH (7)	SU 7.0	7.0		0.1 pH Units	7.0	7.01	+/- 0.3 pH Units
pH (10)	SU 10.0			0.1 pH Units			
Redox	+/- mV 240	239		10 mV	240	243.5	+/- 10 mV
Conductivity	mS/cm 1.413	1.413		0.5 % of standard	1.413	1.417	+/- 5% of standard
DO (saturated)	% 100	N/M		2% of standard			
DO (saturated) m	g/L ¹ (see Chart 1)	8.0	+/-	0.2 mg/L	8.53	7.94	+/- 0.5 mg/L of
DO (<0.1)	mg/L <0.1			.5 mg/L			standard
Temperature	°C	21.04	4			20.89	
Baro. Press.	mmHg	736.2				730.7	
TURBIDITY METER			 Standard	Meter	Standard	Meter	*Acceptance
METER TYPE		Units	Value	Value	Value	Value	Criteria (PM)
MODEL NO.	10				10		CTITETIA (1 1.12)
UNIT ID NO.	≤0.1 Standard	NTU	< 0.1	10.1	50.1	10.2	+/- 0.3 NTU of stan.
' 	20 Standard	NTU	20	20.7	20	21.2	+/- 5% of standard
	100 Standard	NTU	100	99.9	100	105	+/- 5% of standard
R1	800 Standard	NTU	800	802	800	810	+/- 5% of standard
PHOTOIONIZATION DETI			N.S. 200 POS				
METER TYPE	Background	ppmv	< 0.1	-	<0.1		within 5 ppmv of BG
MODEL NO	Span Gas	ppmv	100		100		+/- 10% of standard
	_ Span Gas	ppiiiv	100		100		+/- 10 /6 of standard
O ₂ -LEL 4 GAS METER	27.4	0/	50		50		./ 100/ 6 . 1 1
METER TYPE	_ Methane	%	50		50	/	+/- 10% of standard
MODEL NO.	$ \frac{O_2}{H}$		20.9 25		20.9		+/- 10% of standard
UNIT ID NO.	H ₂ S CO	ppmv ppmv	50		50	-	+/- 10% of standard +/- 10% of standard
OTHER METER		ppinv			30		+/- 10% of standard
OTHER METER METER TYPE							
MODEL NO.	- —			/		/	See Notes Below
UNIT ID NO.	- —		-/				for Additional
OBTI ID NO.	- /		/		/		Information
Faviament as librated with	hin the Acceptance Criteria s	manified for each	of the nero	matara listad shava	(/		
	ed within the Acceptance Cri			narameters listed above.	(IN.A.M.)	t al che	de in n. n.)
	a within the Acceptance Cit	ети зресписа тог	r cach of the		Cal. Standard Lot		Exp. Date
MATERIALS RECORD				pH (4)	594 345	Number	12/17
Deionized Water Source:	Portland F	OS		pH (7)	5GL 573	3	12/17
Lot#/Date Produced:				pH (10)			
Trip Blank Source:				ORP	8540		1/20
Sample Preservatives Source:				Conductivity	5GH 100		8/16
Disposable Filter Type:	0.45µm cellulo	ose		<0.1 Turb. Stan.	A5042	2	may 16
Calibration Fluids / Standard S				20 Turb. Stan.	A5056		may 16
- DO Calibration Fluid (<0.1 1	mg/L) Por	tland FOS		100 Turb. Stan.	A5061		my 16
- Other				800 Turb. Stan.	A5057		Mity 16
- Other - Other				PID Span Gas O ₂ -LEL Span Gas			
- Other				· Other	-		
NOTES:	1						
Do in p	.m. Ouli bratin	. is v. 50	sporty	aut of 5th	ardard		
, ,			. 0				
* = Unless otherwise next liberties	uros and assentance edited	ganaral accorder	with HCED 4	Pagion 1 COP- for E'-14	Instrument Calibratian (F	OASOD E:-140-1:1	and Law Strang Burning and
* = Unless otherwise noted, calibration procedu Sampling (EQASOP-GW001), each dated 1/19						Avraga -i leidealiblat	, and now ourse ruiging and

** = If meter reading is not within acceptance criteria, clean/replace probe and re-calibrate, or use calibrated back-up meter if available. If project requirements necessitate use of the instrument, clearly document any deviations from acceptance criteria on all data sheets and log book entries.

1 = DO Saturated standard value is calculated based on Oxygen Solubility at Indicated Pressure Chart from the USEPA Region 1 SOP for Field Instrument Calibration (EQASOP-FieldCalibrat), dated 1/19/2010.

FIELD INSTRUMENT CALIBRATION RECORD

APPENDIX C

ANALYTICAL DATA – MARCH 2016

APPENDIX C-1

RADIOLOGICAL DATA - MARCH 2016

APPENDIX C-1 Radiological Data - March 2016

Yankee Nuclear Power Station

			Location		MW-105	iΒ		MW-107	'C		SP-1	
			Sample ID		MW-105	iB		MW-107	'C		SP-1	
			Sample Date		3/23/201	16		3/23/20	16		3/23/20	16
			Qc Code		FS			FS			FS	
Lab ID	Analysis	Parameter	Units	Result	Qualifier	Uncertainty	Result	Qualifier	Uncertainty	Result	Qualifier	Uncertainty
GEL	EPA 901.1	Antimony-125	pCi/L							4.05	U	9.26
GEL	EPA 901.1	Cesium-134	pCi/L							0.822	U	2.99
GEL	EPA 901.1	Cesium-137	pCi/L							3.75	U	3.14
GEL	EPA 901.1	Cobalt-60	pCi/L							1.62	U	3.06
GEL	EPA 901.1	Europium-152	pCi/L							3.96	U	9.64
GEL	EPA 901.1	Europium-154	pCi/L							-4.75	U	9.92
GEL	EPA 901.1	Europium-155	pCi/L							-11.2	U	12.5
GEL	EPA 901.1	Niobium-94	pCi/L							-0.388	U	2.7
GEL	EPA 901.1	Silver-108	pCi/L							-1.11	U	2.53
GEL	EPA 905.0 Modified	Strontium-90	pCi/L							-0.261	U	0.759
GEL	EPA 906.0 Modified	Tritium	pCi/L	1460		481	6330		1380	186	U	293

Notes:

FS = Field Sample

pCi/L = Picocuries per liter

U = Not detected

R = Rejected during data validation

J = Result is estimated

Prepared/Date: KMS 04/21/16 Checked/Date: ESS 04/21/16

APPENDIX C-2

CHEMICAL DATA – MARCH 2016

APPENDIX C-2 Chemical Data - March 2016

Yankee Nuclear Power Station

					,			,		1		
			Location	CFW-1	CFW-5	CFW-5	CFW-6	QC	SP-1	SW-1	SW-4	SW-5
			Sample ID	CFW-1	CFW-5	CFW-5 DUP	CFW-6	TB-009	SP-1	SW-1	SW-4	SW-5
			Sample Date	3/24/2016	3/24/2016	3/24/2016	3/24/2016	3/24/2016	3/23/2016	3/24/2016	3/24/2016	3/24/2016
			Qc Code	FS	FS	FD	FS	TB	FS	FS	FS	FS
CEL		Parameter 1.1.1.2-Tetrachloroethane	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier 1 U	Result Qualifier 1 U	Result Qualifier 1 U	Result Qualifier 1 U
GEL		1,1,1,2-Tetrachioroethane	ug/l					1 U	1 U	1 U	1 U	1 U
GEL		, , , , , , , , , , , , , , , , , , , ,	ug/l					1 U	1 U	1 U	1 U	1 U
GEL		1,1,2,2-Tetrachloroethane	ug/l					1 U	1 U	1 U	1 U	1 U
GEL		1,1-Dichloroethane	ug/l ug/l					1 U	1 U	1 U	1 U	1 U
GEL		1.1-Dichloroethane						1 U	1 U	1 U	1 U	1 U
GEL	SW8260B	1.2.4-Trichlorobenzene	ug/l					1 U	1 U	1 U	1 U	1 U
GEL		1.2-Dibromoethane	ug/l					1 U	1 U	1 U	1 U	1 U
GEL		1,2-Dichlorobenzene	ug/l					1 U	1 U	1 U	1 U	1 U
GEL	SW8260B	1,2-Dichloroethane	ug/l					1 U	1 U	1 U	1 U	1 U
GEL		1.2-Dichloropropane	ug/l ug/l					1 U	1 U	1 U	1 U	1 U
GEL		1,3-Dichlorobenzene						1 U	1 U	1 U	1 U	1 U
GEL		1,3-Dichloropropene (total)	ug/l					2 U	2 U	2 U	2 U	2 U
GEL		1,4-Dichlorobenzene	ug/l					1 U	1 U	1 U	1 U	1 U
GEL		2-Butanone	ug/l					5 U	5 U	5 U	5 U	5 U
GEL		4-Methyl-2-pentanone	ug/l					5 U	5 U	5 U	5 U	5 U
GEL	SW8260B		ug/l					5 U	5 U	5 U	5 U	5 U
GEL	SW8260B		ug/l					1 U	1 U	1 U	1 U	1 U
GEL		Bromodichloromethane	ug/l					1 U	1 U	1 U	1 U	1 U
GEL		Bromoform	ug/l					1 U	1 U	1 U	1 U	1 U
GEL		Bromomethane	ug/l					1 U	1 U	1 U	1 U	1 U
GEL		Carbon tetrachloride	ug/l					1 U	1 U	1 U	1 U	1 U
GEL		Chlorobenzene	ug/l					1 U	1 U	1 U	1 U	1 U
GEL		Chloroform	ug/l					1 U	1 U	1 U	1 U	1 U
GEL		Cis-1,2-Dichloroethene	ug/l					1 U	1 U	1 U	1 U	1 U
GEL		Dibromochloromethane	ug/l					1 U	1 U	1 U	1 U	1 U
GEL		Ethylbenzene	ug/l					1 U	1 U	1 U	1 U	1 U
GEL		Methyl Tertbutyl Ether	ug/l ug/l					1 U	1 U	1 U	1 U	1 U
GEL		Methylene chloride						5 U	5 U	5 U	5 U	5 U
GEL		Naphthalene	ug/l					1 U	1 U	1 U	1 U	1 U
GEL	SW8260B		ug/l ug/l					1 U	1 U	1 U	1 U	1 U
GEL		Tetrachloroethene	0					1 U	1 U	1 U	1 U	1 U
GEL	SW8260B		ug/l					1 U	1 U	1 U	1 U	1 U
GEL		trans-1.2-Dichloroethene	ug/l					1 U	1 U	1 U	1 U	1 U
GEL		Trichloroethene	ug/l ug/l					1 U	1 U	1 U	1 U	1 U
GEL		Vinyl chloride						1 U	1 U	1 U	1 U	1 U
GEL		Xylenes, Total	ug/l ug/l					3 U	3 U	3 U	3 U	3 U
		1,4-Dioxane	ug/l					3.0	0.09 J	0.2 U	0.21 U	0.21 U
GEL	SW6020A		ug/I ug/I						0.09 J 5 U	0.2 U	0.21 U	0.21 U
GEL	SW6020A SW6020A								22.1	7.96	10.7	9.99
GEL	SW6020A		ug/l ug/l						1 U	7.96 1 U	10.7 1 U	1 U
GEL	SW6020A		ug/I	2790	19300	21400	9340		1 0	1960	2050	1800
GEL	SW6020A		ug/l	2130	19300	∠ 1 4 00	JJ40		10 U	1960 10 U	10 U	10 U
GEL	SW6020A		ug/l	15300	26200	27200	4640		10 0	100 U	774	265
GEL	SW6020A		ug/l	10000	20200	21200	+0+0		2 U	2 U	2 U	2 U
GEL		Manganese	ug/I ug/I	346	2420	2580	1330		4 U	3.12 J	107	40
GEL	SW6020A		ug/l	340	2420	2000	1330		5 U	5.12 J	5 U	5 U
GEL	SW6020A		ug/I						1 U	1 U	1 U	1 U
GEL	SW7470A		ug/l						0.2 U	0.2 U	0.2 U	0.2 U
GEL	E410.4	Chemical Oxygen Demand	mg/l	38	20.8	23.7	40.8		U.2 U	18 J	0.2 U	29.4
GEL		Total Alkalinity, as CaCO3	mg/l	5.22	92.8	87.6	26.1			3.13	3.65	2.09
JLL	CIVIZUZUD	Total Alkalitity, as CaCOS	1119/1	J.22	32.0	01.0	20.1	1		5.15	3.03	2.00

Notes:
FS = Field Sample
FD = Field Duplicate
TB = Trip Blank
ug/l = micrograms per liter
mg/l = milligrams per liter
U = Not detected
J = Result is estimated

APPENDIX C-3

VALIDATION CHECKLISTS – MARCH 2016

DATA VALIDATION SUMMARY MARCH 2016 SAMPLING YANKEE NUCLEAR POWER STATION ROWE, MASSACHUSETTS

1.0 INTRODUCTION

Groundwater and surface water samples were collected on March 24, 2016, at the Yankee Nuclear Power Station, located in Rowe, Massachusetts. Sample analyses for all parameters except 1,4-dioxane were performed by GEL Laboratories, located in Charleston, South Carolina. Analyses for 1,4-dioxane were performed by Eurofins Lancaster Laboratories, located in Lancaster, Pennsylvania. Samples were analyzed by one or more of the following methods:

- Volatile Organic Compounds (VOCs) by Method 8260B
- 1,4-Dioxane by Method 8270C Selected Ion Monitoring (SIM)
- RCRA Metals (dissolved) by Methods 6020A/7470A
- Calcium, iron, and manganese by Method 6020A
- Alkalinity by Method 2320B
- Chemical Oxygen Demand (COD) by Method 410.4
- Isotopes by Gamma Spectroscopy Method 901.1
- Strontium-90 by Method 905.0 Modified
- Tritium by Method 906.0 Modified

A chemist review was performed on the samples in the data set using information supplied by the laboratories. The data packages were validated using USEPA Region I EPA-New England Data Validation Functional Guidelines for Evaluating Environmental Analyses (USEPA, 1996), the Yankee Nuclear Power Station Groundwater Monitoring Program, Document RP-05, Revision 5 (YNPS, 2012), and "Laboratory Data Validation Guidelines for Evaluating Radionuclide Analyses," Revision 7 (SAIC, 2002).

Results were reported in GEL sample delivery groups (SDGs) 393869 and 393869-1, and Eurofins SDG 1644529. A listing of samples included in this chemistry review is presented in Table 1. A summary of the analytical results is presented in Table 2. No data qualifiers were added to the laboratory results based on the chemist review.

The following data qualifiers are used in the final data presentation:

U = target analyte is not detected at or above the reported detection limit or is qualified as not detected J = concentration is estimated

Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections.

2.0 DATA REVIEW SUMMARY

2.1 VOCs

Data were evaluated for the following parameters:

- Collection and Preservation
- * Holding Times

- * Data Completeness
- Surrogate Recoveries
- * Blank Contamination
- * Laboratory Control Samples (LCS)
- * Matrix Spikes/Matrix Spike Duplicates (MS/MSD)
- * Miscellaneous
- * all criteria were met for this parameter

The results of all associated quality control measurements were within control limits, and sample results were determined to be usable as reported by the laboratory.

2.2 1,4-Dioxane

Data were evaluated for the following parameters:

- * Collection and Preservation
- * Holding Times
- * Data Completeness
- * Surrogate Recoveries
- * Blank Contamination
- LCS/Laboratory Control Sample Duplicates (LCSD)
- Miscellaneous
- * all criteria were met for this parameter

The results of all associated quality control measurements were within control limits, and sample results were determined to be usable as reported by the laboratory.

2.3 Metals

Data were evaluated for the following parameters:

- Collection and Preservation
- * Holding Times
- Data Completeness
- Blank Contamination
- Duplicates
- * LCS
- * MS/MSD
- Miscellaneous
- * all criteria were met for this parameter

The results of all associated quality control measurements were within control limits, and sample results were determined to be usable as reported by the laboratory.

2.4 Wet Chemistry

Data were evaluated for the following parameters:

Collection and Preservation

- * Holding Times
- * Data Completeness
- * Blank Contamination
- * Duplicates
- * LCS
- * MS
- * Miscellaneous

The results of all associated quality control measurements were within control limits, and sample results were determined to be usable as reported by the laboratory.

2.5 Radiological Parameters

Data were evaluated for the following parameters:

- Collection and Preservation
- * Holding Times
- * Data Completeness
- Blank Contamination
- Duplicates
- * LCS
- * MS
- * Miscellaneous

The results of all associated quality control measurements were within control limits, and sample results were determined to be usable as reported by the laboratory.

References:

U.S. Environmental Protection Agency (USEPA), 1996. "Region I, EPA-New England Data Validation Functional Guidelines for Evaluating Environmental Analyses, Parts I and II," Quality Assurance Unit Staff; Office of Environmental Measurement and Evaluation; December, 1996.

Yankee Nuclear Power Station (YNPS), 2012. "YNPS Groundwater Monitoring Program." ISFSI Radiation Protection, RP-05: Revision 5, October 18, 2012.

Science Applications International Corporation (SAIC), 2002. "Laboratory Data Validation Guidelines for Evaluating Radionuclide Analyses." Thomas L. Rucker, Ph.D. and C. Matrin Johnson, Jr.; Revision 7, April, 2002.

^{* -} all criteria were met for this parameter

^{* -} all criteria were met for this parameter

Data Validator:

Julie Ricardi

Julie Miaron

April 21, 2016

Senior Reviewed:

Bradley B. LaForest, NRCC-EAC

April 21, 2016

TABLE 1 - SUMMARY OF SAMPLES AND ANALYTICAL METHODS DATA VALIDATION SUMMARY. YANKEE NUCLEAR POWER STATION ROWE, MASSCHUSETTS

MARCH 2016 SAMPLING EVENT

			Method	Tod Class	Class COD		RAD		Alkalinity		Metals		රි 	1,4-Dioxane
			Analysi	is Method	E410.4	E901.1	E905.0	E906.0	SM2320B	SW6020A	SW6020A	SW7470A	SW8260B	SW8270C SIM
			•	Fraction	z	⊢	⊢	}-	z	۵	Fraction N T T T N D T D N	۵	z	
DG Mec	Lab SDG Media Location	Field Sample Date	Field Sample ID	Oc Code										
1644529 SW	SP-1	3/23/2016	SP-1	Σ.										Ļ
1644529 SW	SW-1	3/24/2016	SW-1	S.									!	-
1644529 SW		3/24/2016	SW-4	FS										. 1
1644529 SW	SW-5	3/24/2016	SW-5	S.			 : 							Ļ
393869 BW		3/24/2016	TB-009	18									37	
393869 GW	7- CFW-1	3/24/2016	CFW-1	S.	_				_		8			
393869 GW	!	3/24/2016	CFW-5	FS	_				-	:	ო			
393869 GW	CFW-5	3/24/2016	CFW-5 DUP	6	-				-		8			
393869 GW	CFW-6	3/24/2016	CFW-6	FS	-				1		8		!	
393869 GW		3/23/2016	MW-105B	FS.										
393869 GW		MW-107C 3/23/2016	MW-107C	FS.									 	
393869 SW	SP-1	3/23/2016	SP-1	FS		б	Ţ	~					37	
393869 SW	SW-1	3/24/2016	SW-1	FS	-				-		ಣ	Ī	. 37	İ
393869 SW	SW-4	3/24/2016	SW-4	FS	_			-	-	•	က		37	
393869 SW	SW-5	3/24/2016	SW-5	FS	_				1		3		37	
393869-1 SW	SP-1	3/23/2016	SP-1	FS						7		_		
393869-1 SW	SW-1	3/24/2016	SW-1	ح						2	1	_		
393869-1 SW	SW-4	3/24/2016	SW-4	55						7		-		
303869-1 SW	SW-5	3/24/2016	SW-5	SE				_		7		τ-		

NOTES:

T, N = total, D = dissolved

FS = fleld sample, FD = field duplicate, TB = trip blank

GW = groundwater SW = surface water BW = blank water

MARCH 2016 - VOCs

Sample Date 3/24/2	,		ည္	SP-1	SW-1	7 1010
Sample Date 3/24/2 Sample ID TB-C Sample ID TB-C Coc Code TB-C N 1,1,1,2-Tetrachloroethane mg/L 0.001 t N 1,1,2-Trichloroethane mg/L 0.001 t N 1,1-Dichloroethane mg/L 0.001 t N 1,1-Dichloroethane mg/L 0.001 t N 1,2-Trichloroethane mg/L 0.001 t N 1,2-Dichloroethane mg/L 0.001 t N 1,3-Dichloroethane mg/L 0.001 t N 1,3-Dichloroethane mg/L 0.001 t N 1,4-Dichloroethane mg/L 0.001 t N 1,4-Dichloroethane mg/L 0.001 t N 1,4-Dichloroethane mg/L 0.001 t N						SW-4
Praction Parameter Duits Pac Code	Cilipo		4/2016	3/23/2016	3/24/2016	3/24/2016
Taction Parameter Units Result	San		- 600-8	SP-1	SW-1	SW-4
Fraction Parameter Units Result N 1,1,1,2,7-Tetrachioroethane mg/L 0.001 N 1,1,2,1,1,2,7-Tetrachioroethane mg/L 0.001 N 1,1,2,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1	ŏ			Щ	ES.	ES.
N 1,1,2-Tetrachloroethane mg/L N 1,1,2-Tetrachloroethane mg/L N 1,1,2-Tertachloroethane mg/L N 1,1-Dichloroethane mg/L N 1,2-Dichloroethane mg/L N 1,2-Dichloropene (total) mg/L N 1,2-Dichloroethane mg/L N 1,2-Dichloroe			Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
N 1,1,2,2-Tetrachloroethane mg/L N 1,1,2,2-Trichloroethane mg/L N 1,1-Dichloroethane mg/L N 1,1-Dichloroethane mg/L N 1,2-Dichloroethane mg/L N 1,2-Dichloroethane mg/L N 1,2-Dichloroenzene mg/L N 2-Burtanone mg/L N 2-Burtanone mg/L N 3-Dichloroenzene mg/L N 4-Mettryl-2-pentanone mg/L N Acetone mg/L N Acetone mg/L N Garbon tetrachloride mg/L N Garbon tetrachloride mg/L N Chlorobenzene mg/L N Chlorobenzene mg/L N Chlorothane mg/L Mettryl Ertrutyl Ether mg/L N Mettryl Tertrutyl Ether mg/L N Styrene	ane	 .	. 0	0.001 U	0.001 U	0.001 U
N 1,1,2,2-Tetrachloroethane mg/L N 1,1-Dichloroethane mg/L N 1,2-Trichloroethane mg/L N 1,2-Dibromoethane mg/L N 1,2-Dibromoethane mg/L N 1,2-Dichlorobenzene mg/L N 1,2-Dichlorobenzene mg/L N 1,2-Dichlorobenzene mg/L N 1,2-Dichloropensene mg/L N 1,3-Dichloropensene mg/L N 1,3-Dichloropensene mg/L N 1,3-Dichloropensene mg/L N 1,3-Dichloropensene mg/L N 1,3-Dichloropene (total) mg/L N 1,3-Dichloropensene mg/L N 1,3-Dichloromethane mg/L N 2-Butanone mg/L N A-Methyl-2-pentanone mg/L N Acetone mg/L N Acetone mg/L N Grabon tetrachloride mg/L N Carbon tetrachloride mg/L N Chloroform mg/L N Chloroform mg/L N Chloroform mg/L N Chloroform mg/L N Grabutyl Ether mg/L N Grabutyl Tertbutyl Ether mg/L N Achtylene chloride mg/L			ח	0.001 U	0.001 U	0.001 U
N 1,1,2-Trichloroethane mg/L N 1,1-Dichloroethane mg/L N 1,2-A-Trichloroethane mg/L N 1,2-Dibromoethane mg/L N 1,2-Dichloroenzene mg/L N 1,2-Dichloroethane mg/L N 1,2-Dichloropenzene mg/L N 1,2-Dichloropenzene mg/L N 1,3-Dichloropenzene mg/L N 2-Butanone mg/L N Acetone mg/L N Acetone mg/L N Acetone mg/L N Acetone mg/L N Carbon tetrachloride mg/L N Carbon tetrachloride mg/L N Chloroform mg/L N Activitene chloride mg/L N Activitene chloride mg/L N Activitene chloride mg/L N Activitene chloride mg/L N Styrene	ane		<u> </u>	0.001 U	0.001 U	0.001 U
N 1,1-Dichloroethane mg/L N 1,2-Dichloroethane mg/L N 1,2-Dichloroethane mg/L N 1,2-Dichloroethane mg/L N 1,2-Dichloroethane mg/L N 1,2-Dichloropropane mg/L N 1,3-Dichloropropane mg/L N 1,3-Dichloropropane mg/L N 1,3-Dichloropropane (total) mg/L N 1,3-Dichloropropane mg/L N 2-Butanone mg/L N 4-Methyl-2-pentanone mg/L N Acetone mg/L N Carbon tetrachloride mg/L N Carbon tetrachloride mg/L N Chloroform mg/L N Styrene mg/L N Activity Ether mg/L			<u> </u>	0.001 U	0.001 U	0.001 U
N 1,1-Dichloroethene mg/L N 1,2-Dibromoethene mg/L N 1,2-Dichlorobenzene mg/L N 1,2-Dichlorobenzene mg/L N 1,2-Dichloropropane mg/L N 1,3-Dichloropropane mg/L N 1,3-Dichloropropane mg/L N 1,3-Dichloropropane mg/L N 1,3-Dichloropropane (total) mg/L N 1,3-Dichloropropane mg/L N 2-Butanone mg/L N Acetone mg/L N Carbon tetrachloride mg/L N Carbon tetrachloride mg/L N Chlorobenzene mg/L N Chloroform mg/L N Activitiene chloride mg/L N Activitiene chloride mg/L N Activitiene chloride mg/L N Activitiene chloride mg/L N Activitiene mg/L N Activitiene mg/L N Activitiene mg/L				0.001 U	0.001 U	0.001 U
N 1,2-Dichlorobenzene mg/L N 1,2-Dichlorobenzene mg/L N 1,2-Dichloropenaene mg/L N 1,3-Dichloropenaene mg/L N 1,3-Dichloropenaene mg/L N 1,3-Dichloropenaene mg/L N 1,3-Dichloropenaene mg/L N 2-Butranone mg/L N Acetone mg/L N Acetone mg/L N Bromodichloromethane mg/L N Bromodichloromethane mg/L N Carbon tetrachloride mg/L N Chlorobenzene mg/L N Chloroform thane mg/L N Styrene mg/L N Styrene mg/L				0.001 U	0.001 U	0.001 U
N 1,2-Dichlorobenzene mg/L N 1,2-Dichloropenzene mg/L N 1,2-Dichloropenzene mg/L N 1,3-Dichloropenzene mg/L N 1,3-Dichloropenzene mg/L N 1,3-Dichloropenzene mg/L N 2-Butranone mg/L N 4-Mettyl-2-pentanone mg/L N Benzene mg/L N Bromodichloromethane mg/L N Bromodichloromethane mg/L N Carbon tetrachloride mg/L N Chlorobenzene mg/L N Chloroform thane mg/L N Styrene mg/L N Styrene mg/L N Styrene	3)		Π	0.001 U	0.001 U	0.001 U
N 1,2-Dichloroethane mg/L N 1,2-Dichloroethane mg/L N 1,3-Dichloropropane mg/L N 1,3-Dichloropropane mg/L N 1,4-Dichloropropene (total) mg/L N 2-Butanone mg/L N Acetone mg/L N Acetone mg/L N Benzene mg/L N Bromodichloromethane mg/L N Bromoform mg/L N Carbon tetrachloride mg/L N Chlorobenzene mg/L N Chlorobenzene mg/L N Chloroform mg/L N Styrene mg/L N Styrene mg/L N Styrene mg/L			ı n	0.001 U	0.001 U	0.001 U
N 1,2-Dichloropthane mg/L N 1,3-Dichloropropane mg/L N 1,3-Dichloropropene (total) mg/L N 2-Butanone mg/L N 4-Methyl-2-pentanone mg/L N Acetone mg/L N Benzene mg/L N Bromodichloromethane mg/L N Bromodichloromethane mg/L N Carbon tetrachloride mg/L N Chlorobenzene mg/L N Chloroform mg/L N Styrene mg/L N Methyl Terbutyl Ether mg/L N Styrene mg/L N Styrene) 	0.001 U	0.001 U	0.001 U
N 1,2-Dichloropanee mg/L N 1,3-Dichlorobenzene mg/L N 1,4-Dichloropene (total) mg/L N 2-Butanone mg/L N 4-Methyl-2-pentanone mg/L N Acetone mg/L N Benzene mg/L N Bromodichloromethane mg/L N Bromodichloromethane mg/L N Carbon tetrachloride mg/L N Carbon tetrachloride mg/L N Chloroform mg/L N Styrene mg/L N Styrene		. <u> </u>	n	0.001 U	0.001 U	0.001 U
N 1,3-Dichlorobenzene mg/L N 1,4-Dichloropene (total) mg/L N 2-Butanone mg/L N 4-Methyl-2-pentanone mg/L N Acetone mg/L N Benzene mg/L N Bromodichloromethane mg/L N Carbon tetrachloride mg/L N Chloroform mg/L N Methyl Tertbutyl Ether mg/L N Styrene mg/L				0.001 U	0.001 U	0.001 U
N 1.3-Dichloropropene (total) mg/L N 2-Butanone mg/L N 4-Methyl-2-pentanone mg/L N Acetone mg/L N Benzene mg/L N Bromodichloromethane mg/L N Bromodichloromethane mg/L N Carbon tetrachloride mg/L N Chloroform mg/L N Styrene mg/L				0.001 U	0.001 U	0.001 U
N 2-Butanone mg/L N 4-Methyl-2-pentanone mg/L N Acetone mg/L N Benzene mg/L N Bromodichloromethane mg/L N Bromodichloromethane mg/L N Carbon tetrachloride mg/L N Chloroform mg/L N Styrene mg/L	(total)		n i	0.002 U	0.002 U	0.002 U
N 2-Butanone mg/L N Acetone mg/L N Benzene mg/L N Bromodichloromethane mg/L N Bromonethane mg/L N Carbon tetrachloride mg/L N Chloroform mg/L			<u> </u>	0.001 U	0.001 U	0.001 U
N Acetone mg/L N Benzene mg/L N Bromodichloromethane mg/L N Bromodichloromethane mg/L N Carbon tetrachloride mg/L N Chloroform mg/L N Strytene mg/L N Methyl Tertbutyl Ether mg/L N Methylene chloride mg/L N Styrene mg/L			n :	0.005 U	0.005 U	0.005 U
N Acetone mg/L N Bromodichloromethane mg/L N Bromoform mg/L N Carbon tetrachloride mg/L N Chloroform mg/L N Chloroform mg/L N Chloroform mg/L N Cis-1,2-Dichloroethene mg/L N Ethylbenzene mg/L N Ethylbenzene mg/L N Ethylbenzene mg/L N Methyl Tertbutyl Ether mg/L N Methylene chloride mg/L N Ashrene mg/L N Styrene mg/L			Ü	0.005 U	0.005 U	0.005 U
N Benzene mg/L N Bromodichloromethane mg/L N Bromomethane mg/L N Carbon tetrachloride mg/L N Chloroform mg/L N Chloroform mg/L N Cis-1,2-Dichloroethene mg/L N Ethylbenzene mg/L N Ethylbenzene mg/L N Ethylbenzene mg/L N Methyl Tertbutyl Ether mg/L N Methylene chloride mg/L N Methylene chloride mg/L N Styrene mg/L N Styrene mg/L		<u> </u>	. U	0.005 U	0.005 U	0.005 U
N Bromodichloromethane mg/L mg/L N Bromoform mg/L mg/L N Carbon tetrachloride mg/L N Chlorobenzene mg/L M Chloroform mg/L N Cis-1,2-Dichloroethene mg/L N Ethylbenzene mg/L N Ethylbenzene mg/L N Ethylbenzene mg/L N Methyl Tertbutyl Ether mg/L N Methylene chloride mg/L N Methylene chloride mg/L N Styrene mg/L mg/L N Styrene mg/L mg/L N Styrene mg/L mg/L M Styrene mg/L mg/L			n	0.001 U	0.001 U	0.001 U
N Bromonethane mg/L N Carbon tetrachloride mg/L N Chlorobenzene mg/L N Chloroform mg/L N Chloroform mg/L N Cis-1,2-Dichloroethene mg/L N Ettrylbenzene mg/L N Ettrylbenzene mg/L N Methyl Tertbutyl Ether mg/L N Methylene chloride mg/L N Methylene chloride mg/L N Styrene mg/L N Styrene mg/L	chloromethane		D.	0.001 U	0.001 U	0.001 U
N Carbon tetrachloride mg/L N Chlorobenzene mg/L N Chloroform mg/L N Chloroform mg/L N Cis-1,2-Dichloroethene mg/L N Ethylbenzene mg/L N Ethylbenzene mg/L N Methyl Tertbutyl Ether mg/L N Methylene chloride mg/L N Naphthalene mg/L N Styrene mg/L			ח	0.001 U	0.001 U	0.001 U
N Carbon tetrachloride mg/L N Chlorobenzene mg/L N Chloroform mg/L N Cis-1,2-Dichloroethene mg/L N Ethylbenzene mg/L N Methyl Tertbutyl Ether mg/L N Methylene chloride mg/L N Naphthalene mg/L N Styrene mg/L N Styrene mg/L			<u>.</u> ⊃¦	0.001 U	0.001 U	0.001 U
N Chlorobenzene mg/L N Chloroform mg/L N Cis-1,2-Dichloroethene mg/L N Ethylbenzene mg/L N Methyl Tertbutyl Ether mg/L N Methylene chloride mg/L N Methylene chloride mg/L N Styrene mg/L N Styrene mg/L				0.001 U	0.001 U	0.001 U
N Chloroform mg/L N Cis-1,2-Dichloroethene mg/L N Ethylbenzene mg/L N Methyl Tertbutyl Ether mg/L N Methylene chloride mg/L N Naphthalene mg/L N Styrene mg/L N Styrene mg/L				0.001 U	0.001.U	0.001 U
N Cis-1,2-Dichloroethene mg/L N Dibromochloromethane mg/L N Ethylbenzene mg/L N Methyl Tertbutyl Ether mg/L N Methylene chloride mg/L N Naphthalene mg/L N Styrene mg/L N Styrene mg/L			_	0.001 U	0,001 U	0.001 U
N Ethylbenzene mg/L mg/L N Methyl Tertbutyl Ether mg/L N Methylene chloride mg/L N Naphthalene mg/L N Styrene mg/L N Styrene mg/L N Styrene mg/L mg/L N Tetrachlomethene	loroethene		_	0.001 U	0.001 U	0.001 U
N Ethylberzene mg/L N Methyl Tertbutyl Ether mg/L N Methylene chloride mg/L N Naphthalene mg/L N Styrene mg/L N Tetrachlomethene mg/L	0		⊃	0.001 U	0.001 U	0.001 U
N Methyl Terbutyl Ether mg/L N Methylene chloride mg/L N Styrene mg/L N Styrene mg/L N Tetrachlomethene mg/L			ח ח	0.001 U	0.001 U	0.001 U
N Methylene chloride mg/L N Styrene mg/L Mg/L N Styrene mg/L N Tetrachlomethene mg/L N Tetrachlomethene			_n_	0.001 U	0.001 U	0.001 U
N Styrene mg/L Mg/L N Tetrachlome mg/L N Tetrachlomethene	<u> </u>		. n	0:005 U	0.005 U	0.005 U
N Styrene mg/L N Tetrachlomethone mg/L	<u> </u>		n	0.001 U	0.001 U	0.001 U
N Tetrachlomethene				0.001 U	0.001 U	0.001 U
	Tetrachloroethene	•	<u> </u>	0.001 U	0.001 U	0.001 U
SW8260B N Toluene mg/L 0.001 U			_ 	0.001 U	0.001 U	0.001 U

Prepared by: KAS-4/18/2016 Checked by: JAR 4/19/2016

TABLE 2 - SUMMARY OF ANALYTICAL RESULTS YANKEE NUCLEAR POWER STATION ROWE, MASSACHUSETTS DATA VALIDATION SUMMARY

MARCH 2016 - VOCs

		Sample De	livery Group	39	393869	393	393869	393869	393869
			Location	_	တ္တ	is S	SP-1	SW-1	SW-4
			Sample Date		3/24/2016	3/23	3/23/2016	3/24/2016	3/24/2016
			Sample ID		TB-009	ά	SP-1	SW-1	SW-4
		•	Oc Code		TB	Ш.,	FS	FS	FS
Analysis	Fraction	Fraction Parameter	Units	Result	Qualifier	Result	Result Qualifier	Result Qualifier	Result Qualifier
SW8260B	z	trans-1,2-Dichloroethene	mg/∟	0.001 U	כ	0.001 U	П	0.001 U	0.001 U
SW8260B	Z	Trichloroethene	mg/L	0.001	ח	0.001 U	⊃	0.001	0.001 U
SW8260B	Z	Vinyl chloride	mg/L	0.001 U	ב	0.001 U	n	0.001 U	0.001 U
SW8260B	z	Xylenes, Total	mg/L	0.003 U	חַ	0.003	n	0.003 U	0.003 U

NOTES:

VOCs = volatile organic compounds

N = totai

mg/L = milligram per liter

U = not detected at the reported quanitation limit FS = field sample, TB = trip blank

MARCH 2016 - VOCs

		Sample Delivery Group	ivery Group	393869 SW-5
		Ś	Sample Date	3/24/2016
			Sample ID	SW-5
			Qc Code	ΉS
Analysis	Fraction	쁘	Units	Result Qualifier
SW8260B	z	1,1,1,2-Tetrachloroethane	mg/L	0.001 U
SW8260B	z	1,1,1-Trichloroethane	mg/L	0.001 U
SW8260B	Z	1,1,2,2-Tetrachloroethane	mg/L	0.001 U
SW8260B	z	1,1,2-Trichloroethane	mg/L	0.001 U
SW8260B	z	1,1-Dichloroethane	mg/L	0.001 U
SW8260B	z	1,1-Dichloroethene	mg/L	
SW8260B	z	1,2,4-Trichlorobenzene	mg/L	0.001 U
SW8260B	z	1,2-Dibromoethane	mg/L	0.001 U
SW8260B	z	1,2-Dichlorobenzene	mg/L	0.001 U
SW8260B	Z	1,2-Dichloroethane	mg/L	0.001 U
SW8260B	Z	1,2-Dichloropropane	mg/L	0.001 U
SW8260B	Z	1,3-Dichlorobenzene	mg/L	0.001 U
SW8260B	Z	1,3-Dichloropropene (total)	mg/L	0.002 U
SW8260B	Z	1,4-Dichlorobenzene	mg/L	0.001 U
SW8260B	z	2-Butanone	mg/l_	0.005 U
SW8260B	z	4-Methyl-2-pentanone	_l/gm	0.005 U
SW8260B	z	Acetone	_mg/l_	0.005 U
SW8260B	Z	Benzene	mg/L	0.001 U
SW8260B	z	Bromodichloromethane	mg/L	0.001 U
SW8260B	z	Bromoform	mg/L	0.001 U
SW8260B	z	Bromomethane	mg/L	0.001 U
SW8260B	z	Carbon tetrachloride	mg/L	0.001 U
SW8260B	z	Chlorobenzene	mg/L	0.001 U
SW8260B	z	Chloroform	mg/l_	0.001 U
SW8260B	z _	Cis-1,2-Dichloroethene	mg/L	0.001 U
SW8260B	z	Dibromochloromethane	mg/L	
SW8260B	z	Ethylbenzene	mg/L	0.001 U
SW8260B	z	Methyl Tertbutyl Ether	mg/L	0.001 U
SW8260B	z	Methylene chloride	mg/L	0.005 U
SW8260B	z ·	Naphthalene	mg/L	0.001 U
SW8260B	z	Styrene	mg/L	0.001 U
SW8260B	z	Tetrachloroethene	mg/L	0.001 U
SW8260B	z	Toluene	mg/L	0.001 U

MARCH 2016 - VOCs

		Sample Deli	Sample Delivery Group	393869
			Location	SW-5
		S	Sample Date	3/24/2016
			Sample ID	SW-5
			Qc Code	FS
Analysis	Fraction	Fraction Parameter	Units	Result Qualifier
SW8260B	z	trans-1,2-Dichloroethene	mg/L	0.001 U
SW8260B	z	Trichloroethene	mg/L	0.001 U
SW8260B	z	Vinyl chloride	mg/L	0.001 U
SW8260B	z	Xylenes, Total	mg/L	0.003 U

NOTES:

VOCs = volatile organic compounds

N = total

mg/L = milligram per liter

U = not detected at the reported quanitation limit

FS = field sample, TB = trip blank

MARCH 2016 - 1,4-DIOXANE

		Sample Deliver	ivery Group	164	1644529	1644	529	1644529	1644529
			Location	S	SP-1	SW	-	SW-4	SW-5
-		Sam	ample Date	3/23/	3/23/2016	3/24/2016	2016	3/24/2016	3/24/2016
•		Sa	Sample ID	S	SP-1	SW-1		SW-4	S-MS
			Qc Code	ш.	S	FS	"	FS	£
Analysis	Fraction	Fraction Parameter	Units	Result	Qualifier	Result	Result Qualifier	Result Qualifier	Result Qualifier
SW8270C SIM	z	1,4-Dioxane	l/gn	0.087	,	0.2 (j	0.21 U	0.21 U

NOTES:

ug/l = microgram per liter

N = total

U = not detected at the reported quanitation limit

FS = field sample, TB = frip blank

MARCH 2016 - INORGANICS DATA

			Sample Delivery Group	ary Group	393	393869	393869	66	393869	999	393869	698
				Location	Ę,	CFW-1	CFW-5	ιŲ	CFW-5	7-5	CFW-6	N-6
			Sar	Sample Date	3/24	/2016	3/24/2(016	3/24/2016	2016	3/24/	2016
			υ,	Sample ID	P	CFW-1	CFW-5	ıφ	CFW-6	DUP	G	CFW-6
				Qc Code	ш	S.	S LL		£	_	ĬĽ.	ທ
Analysis	Fraction	Fraction Parameter		Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW6020A	Ω	Arsenic	-	mg/L				ļ				
SW6020A	_ 	Barium		mg/L					ļ	•••		
SW6020A	۵	Cadmium		mg/L								İ
SW6020A	Q	Chromium		mg/L								
SW6020A		Lead		mg/L f								
SW6020A	۵	Selenium		l/ǵш					! 			
SW6020A	Ω	Silver		mg/l_								
SW6020A	⊢	Calcium		mg/L	2.79		19.3		21.4		9.34	
SW6020A	.L	Iron		mg/l_	15.3		26.2		27.2		4.64	
SW6020A	⊢	Manganese		mg/L	0.346		2.42		2.58		1.33	
SW7470A	۵	Mercury		mg/L								
E410.4	Z	Chemical Oxygen Demand	gen Demand	mg/L	38		20.8		23.7		40.8	
SM2320B	z	Total Alkalinity, as CaCO3	y, as CaCO3	mg/L	5.22		92.8		87.6		26.1	

NOTES:

mg/L = milligram per liter

U = not detected at the reported quanitation limit

J = estimated value

FS = field sample, FD = field duplicate

T, N = total, D = dissolved

MARCH 2016 - INORGANICS DATA

			Sample Deliv	elivery Group	393	393869	393869	69	393	393869	393869-	Ļ.
				Location	S	SW-1	SW-4	4	ΛS	SW-5	SP-1	
			Sal	Sample Date	3/24/	3/24/2016	3/24/2016	016	3/24/	3/24/2016	3/23/2016	9
			•	Sample ID	S	SW-1	SW-4	4	λS	SW-5	SP-1	
				Qc Code	Ŀ	FS	SE .		ш	FS	FS	
Analysis	Fraction	Fraction Parameter		Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result Qualifier	ralifier
SW6020A	۵	Arsenic		_∏/gm						<u>!</u>	0.005 U	
SW6020A	_ 	Barium		mg/L	i						0.0221	
SW6020A	۵	Cadmium		mg/L	i						0.001 U	
SW6020A	۵	Chromium	!	mg/L							0.01 U	
SW6020A	Ω	Lead		mg/L			.		İ		0.002 U	
SW6020A	۵	Selenium		mg/L							0.005 U	
SW6020A	_	Silver		mg/L	İ						0.001 U	
SW6020A	<u></u>	Calcium		mg/L	1.96		2.05		1.8			
SW6020A	⊢	Iron		mg/L	0.1 U	U	0.774		0.265			
SW6020A	i	Manganese		mg/L	0.00312 J	J.	0.107		0.04			
SW7470A	۵	Mercury		mg/L							0.0002 U	
E410.4	z	Chemical Oxygen Demand	gen Demand	mg/L	18 J	ſ	20 U		29.4		:	
SM2320B	z	Total Alkalinity, as CaCO3	, as CaCO3	mg/L	3.13		3.65		2.09			

NOTES:

mg/L = milligram per liter

U = not detected at the reported quanitation limit

J = estimated value

FS = field sample, FD = field duplicate

T, N = total, D = dissolved

MARCH 2016 - INORGANICS DATA

		Saı	Sample Delivery Group	393869-1	393869-1	393869-1
			Location	SW-1	SW-4	SW-5
			Sample Date	3/24/2016	3/24/2016	3/24/2016
			Sample ID	SW-1	SW-4	SW-5
			Oc Code	FS	FS	FS
Analysis	Fraction	Fraction Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier
SW6020A	_	Arsenic	mg/L	0.005 U	0.005 U	0.005 U
SW6020A	٥	Barium	mg/L	0.00796	0.0107	0.00999
SW6020A		Cadmium	mg/L	0.001 U	0.001 U	0.001 U
SW6020A	٥	Chromium	mg/L	0.01 U	0.01 U	0.01 U
SW6020A	<u>.</u>	Lead	mg/L	0.002 U	0.002 U	0.002 U
SW6020A	۵	Selenium	mg/L	0.005 U	0.005 U	0.005 U
SW6020A	٥	Silver	mg/L	0.001 U	0,001 U	0.001 U
SW6020A	⊢	Calcium	mg/L			
SW6020A	T	lron	mg/L			
SW6020A	⊢	Manganese	mg/L			
SW7470A	<u>a</u> .	Mercury	mg/L	0.0002 U	0.0002 U	0.0002 U
E410.4	Z	Chemical Oxygen Demand	Demand mg/L			
SM2320B	z	Total Alkalinity, as CaCO3	CaCO3 mg/L			

NOTES:

mg/L = milligram per liter

U = not detected at the reported quanitation limit

J = estimated value

FS = field sample, FD = field duplicate

T, N = total, D = dissolved

TABLE 2 - SUMMARY OF ANALYTICAL RESULTS DATA VALIDATION SUMMARY YANKEE NUCLEAR POWER STATION ROWE, MASSACHUSETTS

MARCH 2016 - RADIOLOGICAL DATA

	Sample Delivery Group	very Group		393869			393869		393869	6
	-	Location		MW-105B	m		MW-107C	Ŋ	SP-1	
	S	Sample Date		3/23/2016	9		3/23/2016	9	3/23/2016	116
		Sample ID		MW-105B	m		MW-107C	ပ္	SP-1	
		Qc Code		S			FS		FS	
Analysis	Parameter	Units	Result	Qualifier	Qualifier Uncertainty	Result	Qualifier	Result Qualifier Uncertainty	Result Qualifier	Uncertainty
E901.1	Antimony-125	pCi/L							4.05 U	9.26
E901.1	Cesium-134	pCi/L	i						0.822 U	2.99
E901.1	Cesium-137	pCi/L		:					3.75 U	3.14
E901.1	Cobalt-60	pCi/L							1.62 U	3.06
E901.1	Europium-152	pCi/L							3.96 U	9.64
E901.1	Europium-154	pCi/L							4.75 U	9.92
E901.1	Europium-155	pCi/L	į						-11.2 U	12.5
E901.1	Niobium-94	pCi/L						!	-0.388 U	2.7
E901.1	Silver-108	pCi/L							-1.11 U	2.53
E905.0	Strontium-90	pCi/L	İ	. · -					-0.261 U	0.759
E906.0	Tritium	pCi/L	1460		481	6330		1380	186 U	293

NOTES:

pCi/L = picocurie per liter

U = not detected at the reported quanitation limit

FS = field sample

ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

Alkalinity

Sample ID	Analysis Date	Sample Designator (Note 1)	All Scheduled Analyses Performed?	Sample Processing Comments?	Units Correct?	Assessment Criteria (Note 2) (Note 3)
CFW-1	3/29/16	FS	Yes	O.K.	Yes	See attached checklist
CFW-5	3/29/16	FS	Yes	O.K.	Yes	See attached checklist
CFW-5 DUP	3/29/16	DU (Field)	Yes	O.K.	Yes	See attached checklist
SW-1	3/29/16	FS	Yes	O.K.	Yes	See attached checklist
SW-4	3/29/16	FS	Yes	O,K,	Yes	See attached checklist
SW-5	3/29/16	FS	Yes	O.K.	Yes	See attached checklist
CFW-6	3/29/16	FS	Yes	O.K.	Yes	See attached checklist
Laboratory QC						
QC1203517263	3/29/16	BL	Yes	O.K.	Yes	See attached checklist
QC1203517264	3/29/16	QC	Yes	O.K.	Yes	See attached checklist
QC1203517266	3/29/16	DU	Yes	O.K.	Yes	See attached checklist
QC1203517709	3/29/16	SK	Yes	O.K.	Yes	See attached checklist

	NOTE
1,0	FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
2.0	Reported MDC ≤ Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
3.0	Requirements for SK, DU, and QC per section D.
I.	All Requested analyses performed on all samples? X Yes No
II.	Resolution of Sample Processing/Missing Analytes comments:
	No processing issues or missing analytes.
III.	Resolution of Sample Processing/Missing Analytes comments:
IV.	No processing issues or missing analytes.
V.	Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):
	See attached checklist for details; no sample qualifications required.
VI.	Data verification calculation sheets are attached(at least one calculation per batch) NA

Rev. 0

ATTACHMENT C
ASSESSMENT OF DATA QUALITY

Date of the control of th

Date April 12, 2016

ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

Chemical Oxygen Demand (COD)

Sample ID	Analysis Date	Sample Designator (Note I)	All Scheduled Analyses Performed?	Sample Processing Comments?	Units Correct?	Assessment Criteria (Note 2) (Note 3)
CFW-1	3/29/16	FS	Yes	O.K.	Yes	See attached checklist
CFW-5	3/29/16	FS	Yes	O.K.	Yes	See attached checklist
CFW-5 DUP	3/29/16	DU (Field)	Yes	O.K.	Yes	See attached checklist
SW-1	3/29/16	FS	Yes	O.K.	Yes .	See attached checklist
SW-4	3/29/16	FS	Yes	O.K.	Yes	See attached checklist
SW-5	3/29/16	FS .	Yes	O.K.	Yes	See attached checklist
CFW-6	3/29/16	FS	Yes	O.K.	Yes	See attached checklist
Laboratory QC						all all all all all all all all all all
QC1203517024	3/29/16	BL	Yes	O.K.	Yes	See attached checklist
QC1203517025	3/29/16	QC	Yes	O.K.	Yes	See attached checklist
QC1203517026	3/29/16	DU	Yes	O.K.	Yes	See attached checklist
QC1203517027	3/29/16	SK	Yes	O.K.	Yes	See attached checklist

	NOTE
1.0	FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
2.0	Reported MDC \leq Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
3.0	Requirements for SK, DU, and QC per section D.
I.	All Requested analyses performed on all samples?XYcsNo
II.	Resolution of Sample Processing/Missing Analytes comments:
	No processing issues or missing analytes.
III.	Resolution of Sample Processing/Missing Analytes comments:
IV.	No processing issues or missing analytes.
V,	Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):
	See attached checklist for details; no sample qualifications required.
VI.	Data verification calculation sheets are attached(at least one calculation per batch) NA

ATTACHMENT C
ASSESSMENT OF DATA QUALITY
OUTLIE MUMBER
Da

Date April 12, 2016

ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

Gamma Spec

Sample ID	Analysis Date	Sample Designator (Note 1)	All Scheduled Analyses Performed?	Sample Processing Comments?	Units Correct?	Assessment Criteria (Note 2) (Note 3)
SP-1	4/1/16	FS	Yes .	O,K.	Yes	See attached checklist
Laboratory QC				T		
QC1203518030	4/1/16	BL	Yes	O.K.	Yes	See attached checklist
QC1203518032	4/1/16	QC	Yes	O,K,	Yes	See attached checklist
QC1203518031	4/1/16	DU	Yes	O.K	Yes	See attached checklist

	NOTE
1.0	FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
2.0	Reported MDC \leq Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
3.0	Requirements for SK, DU, and QC per section D.
I.	All Requested analyses performed on all samples?XYesNo
II.	Resolution of Sample Processing/Missing Analytes comments:
	No processing issues or missing analytes.
m.	Resolution of Sample Processing/Missing Analytes comments:
IV.	No processing issues or missing analytes.
V.	Resolution of Anomalics in QC, Duplicates, Spikes, or Blanks (Identified above):
	See attached checklist for details; no sample qualifications required.
VI.	Data verification calculation sheets are attached(at least one calculation per batch) NA
	Reviewer Guli Miaso Date April 12, 2016

ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

Strontium-90

Sample ID	Analysis Date	Sample Designator (Note 1)	All Scheduled Analyses Performed?	Sample Processing Comments?	Units Correct?	Assessment Criteria (Note 2) (Note 3)
SP-1	4/4/16	FS	Yes	O.K.	Yes	See attached checklist
Laboratory QC						-
QC1203518575	4/4/16	BL	Yes	O.K.	Yes	See attached checklist
QC1203518578	4/4/16	QC	Yes	O.K.	Yes .	See attached checklist
QC1203518576	4/4/16	DU .	Yes	O.K.	Yes	See attached checklist
QC1203518577	4/4/16	SK	Yes	O.K.	Yes	See attached checklist

	NOTE
1.0	FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
2.0	Reported MDC \leq Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
3.0	Requirements for SK, DU, and QC per section D.
Ĩ.	All Requested analyses performed on all samples? X Yes No
II.	Resolution of Sample Processing/Missing Analytes comments:
	No processing issues or missing analytes.
III.	Resolution of Sample Processing/Missing Analytes comments:
IV.	No processing issues or missing analytes.
V.	Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):
	See attached checklist for details; no sample qualifications required.
VI.	Data verification calculation sheets are attached(at least one calculation per batch) NA
	Reviewer Qui Marso Date April 12, 2016

ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

Semivolatile Organic Compounds (SVOCs) - 1,4-Dioxane

Sample ID	Analysis Date	Sample Designator (Note 1)	Ali Scheduled Analyses Performed?	Sample Processing Comments?	Units Correct?	Assessment Criteria (Note 2) (Note 3)
SP-1	4/1/16	FS	Yes	O.K.	Yes	See attached checklist
SW-1	4/1/16	FS	Yes	O,K.	Yos	See attached checklist
SW-4	4/1/16	FS	Yes	O.K.	Yes	See attached checklist
SW-5	4/1/16	FS	Yes	O.K.	Yes	See attached checklist
Laboratory QC						:
Blank16090WAA026	4/1/16	BL	Yes	O.K.	Yes	See attached checklist
LCS16090WAA026	4/1/16	QC	Yes	O.K.	Yes	See attached checklist
LCSD16090WAA026	4/1/16	QC	Yes	O,K,	Yes	See attached checklist

1	NOTE
1.0	FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
2.0	Reported MDC \leq Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
3.0	Requirements for SK, DU, and QC per section D.
Ī.	All Requested analyses performed on all samples?XYesNo
IJ.	Resolution of Sample Processing/Missing Analytes comments:
	No processing issues or missing analytes.
III.	Resolution of Sample Processing/Missing Analytes comments:
IV.	No processing issues or missing analytes.
V.	Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):
	See attached checklist for details; no sample qualifications required.
VI.	Data verification calculation sheets are attached(at least one calculation per batch) NA

Rev. 0

ATTACHMENT C
ASSESSMENT OF DATA QUALITY
Quui Miarle Da

Date <u>April 12, 2016</u>

ASSESSMENT OF DATA QUALITY
List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

Total Mercury

Sample ID	Analysis Date	Sample Designator (Note 1)	All Scheduled Analyses Performed?	Sample Processing Comments?	Units Correct?	Assessment Critoria (Note 2) (Note 3)
SW-1	3/30/16	FS	Yes	O.K.	Yes	See attached checklist
SW-4	3/30/16	FS	Yes	O.K.	Yes	See attached checklist
SW-5	3/30/16	FS	Yes	O,K,	Yes	See attached checklist
SP-1	3/30/16	FS	Yes	O.K.	Yes	See attached checklist
Laboratory QC						
QC1203516962	3/30/16	BL	Yes	O.K.	Yes	See attached checklist
QC1203516963	3/30/16	QC	Yes	O.K.	Yes	See attached checklist

	NOTE,
1.0	FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
2.0	Reported MDC ≤ Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
3.0	Requirements for SK, DU, and QC per section D.
I.	All Requested analyses performed on all samples?XYesNo
П.	Resolution of Sample Processing/Missing Analytes comments:
	No processing issues or missing analytes.
m.	Resolution of Sample Processing/Missing Analytes comments:
IV.	No processing issues or missing analytes.
V.	Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):
	See attached checklist for details; no sample qualifications required.
VI.	Data verification calculation sheets are attached(at least one calculation per batch) NA
	Reviewer Quili Miaron Date April 12, 2016
	\mathcal{O}

ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

Total Metals (excluding Mercury)

Sample ID	Analysis Date	Sample Designator (Note 1)	All Scheduled Analyses Performed?	Sample Processing Comments?	Units Correct?	Assessment Criteria (Note 2) (Note 3)
CFW-1	3/29-30/16	FS	Yes	O.K.	Yes	See attached checklist
CFW-5	3/29-30/16	FS	Yes	O.K.	Yes	See attached checklist
CFW-5 DUP	3/29-30/16	DU (Field)	Yes	O.K.	Yes	See attached checklist
SW-1	3/29-30/16	FS	Yes	O.K.	Yes	See attached checklist
SW-4	3/29-30/16	FS	Yes	O.K.	Yes	See attached checklist
SW-5	3/29-30/16	FS	Yes	O.K.	Yes	See attached checklist
CFW-6	3/29-30/16	FS	Yes	O.K.	Yes	See attached checklist
SP-1	3/29/16	FS	Yes	O,K,	Yes	See attached checklist
Laboratory QC						V173.64 9
QC1203516737	3/29-30/16	BL	Yes	O:K.	Yes	See attached checklist
QC1203516738	3/29-30/16	QC	Yes	O,K, .	Yes	See attached checklist
QC1203516739	3/29-30/16	SK	Yes	O.K.	Yes	See attached checklist
QC1203516740	3/29-30/16	SK	Yes	O.K.	Yes	See attached checklist

	NOTE						
1.0	FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike						
2.0	Reported MDC \leq Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.						
3.0	Requirements for SK, DU, and QC per section D.						
I.	All Requested analyses performed on all samples?XYesNo						
II.	Resolution of Sample Processing/Missing Analytes comments:						
	No processing issues or missing analytes.						
\mathbf{III} .	Resolution of Sample Processing/Missing Analytes comments:						
IV.	No processing issues or missing analytes.						
V.	Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):						
	See attached checklist for details; no sample qualifications required.						

ATTACHMENT C ASSESSMENT OF DATA QUALITY

VI. Data verification calculation sheets are attached(at least one calculation per batch) NA

Julie Miares Date April 12, 2016

ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

Tritium

Sample ID	Analysis Date	Sample Designator (Note 1)	All Scheduled Analyses Performed?	Sample Processing Comments?	Units Correct?	Assessment Criteria (Note 2) (Note 3)
MW-105B	4/4/16	FS	Yes	O.K.	Yes	See attached checklist
MW-107C	4/4/16	FS	Yes	O.K.	Yes	See attached checklist
SP-1	4/4/16	FS	Yes	O.K.	Yes	See attached checklist
Laboratory QC				, ,		
QC1203518287	4/4/16	BL	Yes	O.K.	Yes	See attached checklist
QC1203518290	4/4/16	QC	Yes	O.K.	Yes	See attached checklist
QC1203518288	4/4/16	DU	Yes	O.K.	Yes	See attached checklist
QC1203518289	4/4/16	SK	Yes	O.K.	Yes	See attached checklist

	NOTE					
1.0	FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike					
2.0	Reported MDC \leq Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.					
3.0	Requirements for SK, DU, and QC per section D.					
I.	All Requested analyses performed on all samples?XYesNo					
II.	Resolution of Sample Processing/Missing Analytes comments:					
	No processing issues or missing analytes.					
III.	Resolution of Sample Processing/Missing Analytes comments:					
IV.	No processing issues or missing analytes.					
V.	Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):					
	See attached checklist for details; no sample qualifications required.					
VI.	Data verification calculation sheets are attached(at least one calculation per batch) NA					
	Reviewer Juli Miaso Date April 12, 2016					

Yankee Rowe GW Monitoring March 2016 Sampling GEL Work Order 393869 Duplicate Error Ratio (DER) Calculation Check

				Duplicate					
		Result	TPU	Result	TPU	 RPD	DER		QC Type
MW-105B	Tritium	1460	481	1500	492	3	90.0	OK	Lab Dup

relative percent difference RPD DER TPU

duplicate error ratio

total propagated error

ATTACHMENT C ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

Volatile Organic Compounds (VOCs)

Sample ID	Analysis Date	Sample Designator (Note 1)	All Scheduled Analyses Performed?	Sample Processing Comments?	Units Correct?	Assessment Criteria (Note 2) (Note 3)
SP-1	4/6/16	FS	Yes	O.K.	Yes	See attached checklist
SW-1	4/6/16	FS	Yes	O.K.	Yes	See attached checklist
SW-4	4/6/16	FS	Yes	O.K.	Yes	See attached checklist
SW-5	4/6/16	FS	Yes	O.K.	Yes	See attached checklist
TB-009	4/6/16	BL (Trip)	Yes	O.K.	Yes	See attached checklist
Laboratory QC			MANUFACTURE WATER TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE T			
QC1203522087	4/5/16	BL	Yes	O.K.	Yes	See attached checklist
QC1203522088	4/5/16	QC ·	Yes	O.K.	Yes	See attached checklist
QC1203522089	4/6/16	SK	Yes	O.K.	Yes	See attached checklist
QC1203522090	4/6/16	SK .	Yes	O.K.	Yes	See attached checklist
QC1203523631	4/6/16	BL	Yes	O,K.	Yes	See attached checklist
QC1203523632	4/6/16	QC	Yes	O,K.	Yes	See attached checklist

	NOTE
1.0	FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
2.0	Reported MDC ≤ Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
3.0	Requirements for SK, DU, and QC per section D.
Ī.	All Requested analyses performed on all samples?XYesNo
II.	Resolution of Sample Processing/Missing Analytes comments:
	No processing issues or missing analytes.
III.	Resolution of Sample Processing/Missing Analytes comments:
IV.	No processing issues or missing analytes.
V.	Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):
	See attached checklist for details; no sample qualifications required.
VI.	Data verification calculation sheets are attached(at least one calculation per batch) NA

ATTACHMENT C

ASSESSMENT OF DATA QUALITY

Quili Mian Date April 12, 2016

ATTACEMENT D

REVIEW OF CHAIN OF CUSTODY AND SAMPLE DOCUMENTATION (SAMPLE)

S	Sampling Event Date(s) MANCH 23/27, 2016 Shipment Date MAN CH 27, 7016
7	Vells Sampled in this Batch:
I.	All samples identified on COC forms? Yes No
II.	Samples obtained match those required by sampling plan? Yes No
III.	Verification of unbroken chain of custody for samples? Yes No
IV.	Samples received intact by laboratory?YesNo
V.	Sample flush volumes and flow parameters consistent with historical data and acceptable?YesNo
VI.	Sample non-radiological parameters consistent with historical data and acceptable? YesNo
VII.	All preservative and container requirements met?YesNo
VIII.	— · · · · · · · · · · · · · · · · · · ·
IX.	Evaluation for accepting sample for any questions I – VIII answered "NO" (indicate if resample will be done prior to shipment):
	Reviewer Jane State Date Avan 21, 2016

ATTACHMOENT E

YANKEE NUCLEAR POWER STATION SITE CHARACTERIZATION QUALITY ASSURANCE PROGRAM PLAN FOR SAMPLE DATA QUALITY (SAMPLE)

Identify analytes individually.

Sample	Analyte	Date	Reject, Resample or Reanalyze	Brief Description
No sample samplin	results we event.	ve rejec	ted for the Mar	ch 2016

N/A	<u> </u>	
.,		
· · · · · · · · · · · · · · · · · · ·	Ł	
Are other as	nalytes from this sample affected? Explain.	
Arc changes	to the procedures for sampling, preservation, transport, analy required? Explain specific changes.	/sis or
NIA		

VOLATILE ORGANICS も260日

REGION I VALIDATION CHECKLIST

Criteria and Qualifications: REGION I Organics Guideline (1996)

Chemist Review

-1-1 CK-1-1- 11-(CI	ircie one)
SITE: Yankee Rowe Project #3617147318	SDG# <u></u> 393869
	LAB#: GER Laboratories
Sample IDs: Attach tracking sheet and/or sample listing.	See attached list
This checklist is designed to be used with USEPA Region I evel III validation, calculation and transcription checks are arget compounds, spike recoveries, calibration data, and in these checks are documented on attached validation notes	completed for instrument tuning, surrógates, nternal standards as specified in the guideline.
'ES NO NA	
Oata completeness ☐ ☐ All data summaries, QC forms and raw data available from hard copy or electronic data package	Contact lab if missing data. Lab to respond with 24 hours.
☑ □ □ Data summaries match EDD	Data reported matches coci, coci not signed in the Ridd however sam
Holding Times and Preservation Hold times met (14 days with preservation) Preserved (waters HCL, soils methanol) A Chemist Review nstrument Performance Check (Tune) Tune available for each 12-hour period	physically dropped coolers with Fe for shipment and lab comment. Sorphe Receipt & Review Form note to containers were received intect; seoled. No action reeded.
samples were analyzed Appropriate number of significant figures reported (at least 2) Mass/Charge list (m/z) criteria met	
IA Chemut Review nitial Calibration □ 日 M %RSD less than or equal to 30% □ 日 RRF greater than or equal to 0.05	
VIA Chemist Revuus Continuing Calibration □ □ ✓ %D less than or equal to 25% □ □ □ ✓ RRF greater than or equal to 0.05.	
Blank Contamination	Evaluate all blanks for contamination. Highest contaminant level used for action level. I) * MB - McCl2 1.1 42; all sample ND 1. No qual needed.
Surrogate Recoveries □ □ Surrogates percent recovery criteria met	O'llelie
VOC Region I checklist.doc No Paract Compels reported in TB-009; remove all Sample TICS at correspo	TICUNKNOWN @ 12T = 3,473 min's anding RT (all sample)

VOLATILE ORGANICS

8260B

REGION I VALIDATION CHECKLIST

Criteria and Qualifications: REGION | Organics Guideline (1996)

Chemist Leview TIERI-/II-/III-(circle one)

(water and soil: 70%-130%)		
MS/MSD percent recovery criteria met (water and soil <30%) □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	MSIMSDI Acetone 125 limits : no	65/63 ; wlin quals
soil: 70%-130%)		-
Field Duplicates ☐ ☐ RPD criteria (water <30%, soils <50%) met		
NIA Chemist Review		
□ □ Area counts within -50 to +100 percent of calib. std. □ □ □ Retention Time within 30 seconds of calib. std.		·
Target Compounds ○ K ☐ ☐ ☐ Reviewed narrative for anomalies		
Tentatively Identified Compounds (TiCs) ☐ ☐ ☐ TCL compounds reported as TICs		
Validator's Signature: Qui Mianau		1,000
Date: 4/12/16		

Reference:

USEPA, 1996b. "Region 1 EPA-NE Data Validation Guidelines For Evaluating Environmental Analyses"; Quality Assurance Unit Staff; Office of Environmental Measurement and Evaluation; December 1996.

USEPA, 2006. "Method 8260C Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)", Revision 3, August, 2006.

GC/MS Volatile Technical Case Narrative AMEC Foster Wheeler Environment & Infrastructure (AMEC) SDG #: 393869

Product: Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer

Analytical Method: SW846 8260B

Analytical Procedure: GL-OA-E-038 REV# 22

Analytical Batch: 1557512

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
393869006	SP-1
393869007	SW-1
393869008	SW-4
393869009	SW-5
393869010	TB-009
1203522087	Method Blank (MB)
1203522088	Laboratory Control Sample (LCS)
1203522089	393869006(SP-1) Post Spike (PS)
1203522090	393869006(SP-1) Post Spike Duplicate (PSD)
1203523631	Method Blank (MB)
1203523632	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Blank (MB) Statement

Target analytes were detected in the blank 1203523631 (MB) below the reporting limit. V no wall needless

Miscellaneous Information

TIC Comment

Tentatively identified compounds (TIC) may be requested for samples in this delivery group/work order. Please note that non-requested calibrated analytes detected in a client sample may be reported on the Form 1/Certificate of Analysis as TICs. TIC data, if requested, were included on the Sample Data Summary (Form 1) and included with the sample raw data.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

*		<u> </u>	umma	<u>.Y</u> .					
Workorder: 393869	577.58			- 					Page 7 of 13
Parmname Volatile-GC/MS	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Batch 1557512		•							
1,2-Dibromoethane		U	ND	mg/L				JEB	04/06/16 18:28
1,2-Dichlorobenzene		U	Ӥ́D	mg/L					
1,2-Dichloroethane		Ù	ND	mg/L					
1,2-Dichloropropane		· U	ND	mg/L					
1,3-Dichlorobenzene		U	ND	mg/L					
1,3-Dichloropropylene		· U	ND	mg/L					
1,4-Dichlorobenzene		U	ND	mg/L					
2-Butanone		Ū ,	ND	mg/L		•			
4-Methyl-2-pentanone	•	ΰ	ND	mg/L					•
Acetone		U	ND	mg/L					
Benzone		n .	ND	mg/L					
Bromodichloromethane		ប	· ND	mg/L					
Bromoform		U	ND	mg/L					
Bromomethane		U	ND	mg/L					
Carbon tetrachloride		U	ND	mg/L					
Chlorobenzene		U	ND	mg/L					
Chloroform		U	ND	mg/L					
Dibromochloromethane		U	ND	mg/L					
Ethylbenzene		U	'ND	mg/L					
Methylene chloride			0.00107	mg/L	> AL	l samp	oles 1	VD:	•
Naphthalene		U	ND	mg/L		l samp no	qual) Nec	ded
							U	-	

04/12/16

GEL LABORATORIES LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: AMEC Foster Wheeler Environment

& Infrastructure

Address:

511 Congress Street Portland, Maine 04112

Report Date: April 7, 2016

Contact:

Ms. Julie Ricardi

Project:

Yankee Rowe Groundwater Monitoring

2016

	Client Sample I Sample ID;		009 69010			roiect: lient ID;	AMEC005ROV AMEC005	WE
Parameter	Qualifier	Result		DL R	L Units	DF	AnalystDate	Time Batch Method
Volatile Organics								
GEL 8260B Method List Liqu	uid "As Received	d"						
cis-1,2-Dichloroethylene tert-Butyl methyl ether trans-1,2-Dichloroethyle	Ū	ND ND ND	0.00 00.0 00.0	0.00	1 mg/L	1 1 1		
Surrogate/Tracer recove	7739	Result	Nominal	Recovery%	Acceptable Lin	nits	Date Time:	04/06/16 03 01
1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene		0.0497 mg/L 0.0502 mg/L 0.0509 mg/L	0.050 0.050 0.050	99 100 102	(71%-134%) (74%-124%) (70%-131%)			
Tentatively Identified Co unknown	mpound (TIC)	CAS No.	3.473	-Est:-Goncenti ,0241 ri	1.	it <u>Ou</u>) J	al Date Time:	04/06/16 03 01 J from
The following Analytical I	Methods were j	performed					all sam	ples since
<u>_</u>	Description				Analyst Cor	nments	detected	
1	SW846 8260B			•				

9-4/12/16

SEMIVOLATILE ORGANICS 8270C SIM - 114-DIOXANE

REGION I VALIDATION CHECKLIST for
Criteria and Qualifications: REGION I Organics Guideline (1996)

Chemist (2evels)

TIER-I-/-III-/ (circle one)

SITE: Yankee Rowe Project #: 361714	17318 SDG#: 1644529
	See attached 10+
This checklist is designed to be used with USEPA Region I Level III validation, calculation and transcription checks are target compounds, spike recoveries, calibration data, and in These checks are documented on attached validation notes	completed for instrument tuning, surrogates, ternal standards as specified in the guideline.
YES NO NA	
Data completeness ☑ □ □ All data summaries, QC forms and raw data available from hard copy or electronic data package ☑ □ □ Data summaries match EDD	Contact lab if missing data. Lab to respond with 24 hours. Data reported matches coc; COC was not signed in the field however sampler
Holding Times and Preservation Hold times met (Waters – Extract within 7 days, analyze within 40 days. Soils – extract within 14 days, analyze within 40 days)	physically dropped cooler with fed x for shipment & lab comments on sample Administration Receipt Documentation log note that samples were intact & shipping container was sealed. No
NA Chemist Reviews Instrument Performance Check (Tune) ☐ ☐ Tune available for each 12-hour period samples were analyzed ☐ ☐ Appropriate number of significant figures reported (at least 2) ☐ ☐ Mass/Charge list (m/z) criteria met	action needed.
NIA Chemist Review Initial Calibration □ □ ☑ %RSD less than or equal to 30% □ □ ☑ RRF greater than or equal to 0.05	
N/A Chemist Review Continuing Calibration	
Blank Contamination ☐ ☐ Method blank contamination ☐ ☐ ☐ Equipment/Rinseate blank contamination	Evaluate all blanks for contamination. Highest contaminant level used for action level.
Surrogate Recoveries	

SEMIVOLATILE ORGANICS

18270C SIM - liy-Dioxanc

REGION I VALIDATION CHECKLIST for

Criteria and Qualifications: REGION | Organics Guideline (1996)

Chemist Reviews
THER-1-/-II--(circle one)

	,
Soil = (base/neutral 30%-130%, acid 15%-110%)	
Water = (base/neutral 30%-130%, acid 15%-110%)	
Matrix Spikes and Laboratory Control Samples ☐ ☐ ☐ MS/MSD percent recovery criteria met Soil and Water = (base/neutral 40%-	LCS/LCSD: 73/72 OK
140%, acid 30%-130%) □ □ ☑ MS/MSD RPD criteria met (soils <50%, water <30%)	
□ □ LCS percent recovery criteria met soil/water (base 40%-140%, acid 30%-130%)	
Field Duplicates ☐ ☐ RPD criteria met (soils <50%, water <30%)	
NIA Chemist Review Internal Standard Area counts within -50 to +100 percent of calib. std.	
☐ ☐ ☐ Retention Time within 30 seconds of callb. std.	
Target Compounds Ol≤ ☐ ☐ Reviewed narrative for anomalies	
Tentatively Identified Compounds (TICs) □ □ □ ▼ TCL compounds reported as TICs	
Validator's Signature: Qui Muanon	
Date: 4/12/16	

Reference:

USEPA, 1996b. "Region 1 EPA-NE Data Validation Guidelines For Evaluating Environmental Analyses"; Quality Assurance Unit Staff; Office of Environmental Measurement and Evaluation; December 1996.

USEPA, 2007. "Method 8270D Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)", Revision 4, February, 2007.

2425 New Holland Pike, Lancaster, PA 17691 • 717-659-2303 • Fax: 717-650-2681 • www.EshcasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 AMEC Suite 300 1105 Lakewood Parkway Alpharetta GA 30004

Report Date: April 04, 2016

Project: Yankee Rowe 2016 Monitoring Program

Submittal Date: 03/26/2016 Group Number: 1644529 PO Number: C012207977 Release Number: 3617147318 State of Sample Origin: MA

Client Sample DescriptionLancaster Labs (LL) #SP-1 Grab Groundwater8305262SW-4 Grab Groundwater8305263SW-1 Grab Groundwater8305264SW-5 Grab Groundwater8305265

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

YILLIG

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-laneaster-laboratories-environmental/resources/certifications/.

Electronic Copy To Amec Foster Wheeler

Attn: Julie Ricardi

Barbara Weyardt

Respectfully Submitted,

Barbara A. Weyandt

Specialist

(717) 556-7264

REGION I VALIDATION CHECKLIST for Criteria and Qualifiers: Region I Guidelines (11/08) Che mist だいにい TIER I-/-III-(circle one)

SITE		nKee <u>Je</u> Project#: <u>3617147318</u>	SDG#: 393869
Samp	ole IDs:	Attached tracking sheet or sample listing.	LAB#: GEL Laboratorie
Durin recov	g Level eries, d	t is designed to be used with the USEPA Data V III validation, calculation and transcription check alibration data (blanks, ICV, and CCV), interferen- cified in the guideline. These checks are docum	s are completed for target analytes, spike nce check standards, serial dilutions, and QC
YES	1 ON	IA	
Data	compl∙ □	eteness All data summaries, QC forms and raw data available from hard copy or electronic data package	Contact lab if missing data. Lab to respond with 24 hours.
W_		☐ Data summaries match EDD	
Holdi		es and Preservation ☐ Hold times met (6 months, 28 days Hg) ☐ Preserved (waters HNO₃)	
Calib	ration	Chemist Review	
		☐ ICP/MS Instrument Tune.	Verify that tuning meets mass, resolution, and RSD method criteria.
		Appropriate number of standards used to establish calibration curve.	ICP: at least one blank and one standard Hg: at least one blank and four standards
		Correlation coefficient > 0.995 for Hg Calibrated daily.	Correlation coefficient criteria applicable to all analyses except ICP-AES.
		ICV/CCV %R within acceptance range.	90-110% for ICP-AES/MS, 80-120% for Hg. See additional qualification actions in the Region 1 guidelines.
		☑ CCVs analyzed at the proper frequency.	Every 10 samples or every 2 hrs.
□ ,		QL Standard within limits	70-130% for QL Standard. If out low, (J) detects less then 2X QL standard and (UJ) non-detects. See additional validation actions in the Region I guidelines.

RCRA **INORGANICS**

TER-I-III (circle one)

Blank	(S		Freely rate all blands for nontrival and the second
Meth	od:	☐ Method blank was prepared with each batch of samples or with a maximum of 20	Evaluate all blanks for contamination. Highest contaminant level used for action level. 5X the highest blank contamination is the action level.
		samples ☐ Results >MDL ☐ Absolute value negative MB results > 5x MDL	
□		For ICP/MS verify IS responses meet method criteria	
Calib □	ration E	Blanks: Chembt Review TCB/CCB results > IDL	
		☑ Absolute value of negative ICB/CCB results > 5x MDL	
		☐ CCB analyzed every 10 samples or 2 hrs.	
		Rinseate Blanks:	
		Results >MDL Absolute value of negative ICB/CCB results > 5x MDL	
		Check Sample Chemist Review	
		 ✓ ICS analyzed at proper frequency ✓ Interference present in sample at > 50% 	An ICS must be run at the beginning and end of run or every 8 hours.
		concentration in ICS ☑ ICS AB %R 80%-120%	If interferences (Al, Ca, Fe, Mg) are not > 50% ICS concentration in sample, do not apply.
IOD I	V10 1-4	and Observation lead between	
		ernal Standard Intensities Internal standard relative intensities reported by the laboratory	·
		⊡∕internal standard relative intensities are within 60 – 125 % C₄, Ѥ, Ӎַ∧	Qualify data based on Region 1 guideline
	x Spike	All compounds are within %R of 75-125% excluding results exceeding the spike	oted; sample results > 4x spike concentrations Metals! ICP All OK; His not analyted
		Were post-digestion spikes reported for unacceptable pre-digestion spike recoveries	
		₩as a field blank used for spike analysis	Post-digestion spikes %R fimits = 75% - 125%

RCRA INORGANICS

-FAL METALS (including mercury) Plus Cz, Fe, MA

REGION I VALIDATION CHECKLIST for

Criteria and Qualifiers: Region I Guidelines (11/08)

Chemist Reviews

	<u></u>
Laboratory Control Samples (LCS)	
☐ ☐ Percent recoveries are within limits (waters and soil 80-120%)	
☐ ☐ An LCS was analyzed for each matrix, batch of samples, or every 20 samples.	
Laboratory Duplicate	
□ □ ☑ Was a field blank used as the lab duplicate	
□ □ Is the RPD within water control limits of ±20% for sample values >5x RL(35% for soil)	
☐ ☐ Is the control limit of ± RL met for sample values <5x RL (2x RL for soil)	
☐ ☐ ☑ Was a duplicate analyzed for every matrix and every 20 samples or batch	
Field Duplicate CFW-5/CFW-5 DUP ALLO For sample values >5x RL, the RPD control limit of ± 30% (50% for soil) was met. For sample values <5x RL, the control limit of ±2x RL (4x RL for soil) was met	¥
Serial Dilution CFW-5: All OK Ca, Fq Ma, Are any percent difference criteria > 15% (for samples with a concentration >50 times the IDL)	PCRA by IRP
☐ ☐ ☑ Are results of the diluted samples > the original sample results	
Validator's Signature: Juli Miana	· .
Date: 4 12 16 0	

Reference;

USEPA, 2008. "Region 1 EPA-NE Data Validation Guidelines For Evaluating Environmental Analyses, Part IV, Inorganic data Validation Functional Guidelines"; Quality Assurance Unit Staff; Office of Environmental Measurement and Evaluation; November 2008.

Metals Technical Case Narrative AMEC Foster Wheeler Environment & Infrastructure (AMEC) SDG #: 393869

<u>Product:</u> Determination of Metals by ICP-MS Analytical Method; SW846 3005A/6020A

<u>Analytical Procedure:</u> GL-MA-E-014 REV# 27

Analytical Batch: 1555481

Preparation Method: SW846 3005A

Preparation Procedure: GL-MA-E-006 REV# 13

Preparation Batch: 1555480

The following samples were analyzed using the above methods and analytical procedure(s).

<u>GEL Sample ID#</u>	Client Sample Identification		
393869001	CFW-1	1	
393869002	CFW-5	C C A	
393869003	CFW-5 DUP	Ca, Fc, MA	
393869007	SW-1	Ca, Fc, Mn RCRA Metals	9∼
393869008	SW-4	Helen Progress	™. Na.la. e.
393869009	SW-5		4112116
393869011	CFW-6	.	
1203516737	Method Blank (MB)ICP-MS	•	
1203516738	Laboratory Control Sample (LC	S) .	
1203516741	393869002(CFW-5L) Scrial Dil	ution (SD)	
1203516739	393869002(CFW-5S) Matrix Sp	oike (MS)	
1203516740	393869002(CFW-5SD) Matrix (Spike Duplicate (MSD)	

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Sample Dilutions

Dilutions are performed to minimize matrix interferences resulting from elevated mineral element concentrations present in solid samples and/or to bring over range target analyte concentrations into the linear calibration range of the instrument, Samples 393869002 (CFW-5), 393869003 (CFW-5 DUP) and 393869011 (CFW-6) were diluted to ensure that the analyte concentrations were within the linear calibration range of the instrument.

Ameloui	393869			
Analyté "	002	003	011	
Мапрапеве	10X	10X	10 X	

Metals

Technical Case Narrative

AMEC Foster Wheeler Environment & Infrastructure (AMEC) SDG #: 393869-1

Work Order #: 393878

<u>Product:</u> Determination of Metals by ICP-MS <u>Analytical Method</u>: SW846 3005A/6020A <u>Analytical Procedure:</u> GL-MA-E-014 REV# 27

Analytical Batch: 1555481

Product: Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer

Analytical Method: SW846 7470A

Analytical Procedure: GL-MA-E-010 REV# 31

Analytical Batch: 1555569

Preparation Method: SW846 3005A

Preparation Procedure: GL-MA-E-006 REV# 13

Preparation Batch: 1555480

Preparation Method: SW846 7470A Prep

Preparation Procedure: GL-MA-E-010 REV# 31

Preparation Batch: 1555568

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample [D#	Client Sample Identification	
393878001	SP-1 :	
393878002	SW-1 12 0 0 0 b 1	
393878003	SW-4 (RCRA Metal)	0.0
393878004	SW-5	9
1203516737	Method Blank (MB)ICP-MS	41111116
1203516738	Laboratory Control Sample (LCS)	
1203516741	393869002(CFW-5L) Serial Dilution (SD)	
1203516739	393869002(CFW-5S) Matrix Spike (MS)	-
1203516740	393869002(CFW-5SD) Matrix Spike Duplicate (MSD)	
1203516962	Method Blank (MB)CVAA	
1203516963	Laboratory Control Sample (LCS)	
1203516969	392956001(NonSDGL) Serial Dilution (SD)	
1203516967	392956001(NonSDGD) Sample Duplicate (DUP)	
1203516968	392956001(NonSDGS) Matrix Spike (MS)	

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Certification Statement

CHEMIST REVIEW-VALIDATION CHECKLIST

	2320B 410, 4
Project: Yankee Roue	Method: Alkalinity; Coll Laboratory and SDG: GEL # 393869
Project #: 3617147318	Laboratory and SDG: 1666 # 393869
Date: 4/12/16	Reviewer: Thice Pricardi
The state of the s	
Chemist Review Enll Validation (s	add nage 2)

1. Case Narrative and Data Package Completeness (COC Review)

No problems noted; all results reported as per coc Sec attached sample list.

2. Holding Time and Sample Preservation/Collection

014

3. QC Blanks

ND

4. Laboratory Control Sample Review

014

5. Field Duplicate Precision

6. Lab Duplicate Precision

7. Matrix Spike Results (if applicable)

8. Surrogate Recovery (if applicable)

NIA

9. Internal Standard Recovery (if applicable)

NIA

General Chemistry Technical Case Narrative AMEC Foster Wheeler Environment & Infrastructure (AMEC) SDG #: 393869

Product: COD

Analytical Method: EPA 410.4

Analytical Procedure: GL-GC-E-061 REV# 19

Analytical Batch: 1555578

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification	
393869001	CFW-1 ~ 7	
393869002	CFW-5	
393869003	CFW-5 DUP	
393869007	SW-1 SW-4 COD; Alkalinity	
393869008	SW-4 COD FINERUM S	^~
393869009	SW-5	Minlie
393869011	CFW-6	7((5) = -
1203517024	Method Blank (MB)	
1203517025	Laboratory Control Sample (LCS)	
1203517026	393869002(CFW-5) Sample Duplicate (DUP)	
1203517027	393869002(CFW-5) Matrix Spike (MS)	

The samples in this SDG were analyzed on an "as received" basis,

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

RADIONUCLIDE ANALYSES VALIDATION CHECKLIST for YANKEE ROWE

Gamma Spel; Sr 90; Trition
TIER I / II / III Chemist Review (circle one)

SITE: Yank	ce Roue Project # 3617147318	SDG#: 393869
Sample lDs:	See attached	LAB#: BEL Laboratores
<u> </u>		
YES NO NA		
Data comple □ □	eteness All data summaries, QC forms and raw data available from hard copy or electronic data package	Contact lab if missing data. Lab to respond with 24 hours.
	Data summaries match EDD	
	es and Preservation Hold times met (6 months) Preserved Gamme Spec / Sn9	<i>p</i>
	kground Checks) Method blank was prepared with each batch of samples or with a maximum of 20 samples	
	Are result < MDA qualify not detected (U) Are results > 5 times blank concentration	
Tracer Reco	very Recovery > 50% and <100% Sr 90 Recovery >100%	
Matrix Spike ☑ □ □	Percent recovery of 75-125% excluding results exceeding the spike concentration by ≥4x	05B for Mitium
	Was a field blank used for spike analysis	
Laboratory	Control Samples (LCS) all Mathods Percent recoveries are within limits of 75- 125%	OK
	LCS was analyzed for each matrix, batch of samples, or every 20 samples.	

RADIONUCLIDE ANALYSES VALIDATION CHECKLIST for YANKEE ROWE

TIER I / II / III / Chemist Review (circle one) Laboratory Duplicate SP-1 for Sr90 & Gamme Spec; MW-105B for Mitium If the AZS for a particular radionuclide is > 3, Was a field blank used as the lab duplicate qualify the results for that radionuclide in all سنسم RPD within 20% for results greater than 5X associated samples of the same matrix as **CRDL** estimated (J). Is the AZS >3 Jan ALL OK Duplicate analyzed for every matrix and every 20 samples or batch Field Duplicate □ NIA RPD within 20% for results greater than 5X **CRDL** Is the AZS >3 Quantitation Results <DL qualified as non-detect (U) Validator's Signature: Date:

Date:

Additional Comments

The matrix spike, 1203518577 (SP-1MS), aliquot was reduced to conserve sample volume.

<u>Product:</u> LSC, Tritium Dist, Liquid <u>Analytical Method;</u> EPA 906.0 Modified

Analytical Procedure: GL-RAD-A-002 REV# 21

Analytical Batch: 1556067

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
393869004	MW-105B -7
393869005	MW-107C / Mithum gr
393869006	SP-1 I Mithum grylizh
1203518287	Method Blank (MB)
1203518288	393869004(MW-105B) Sample Duplicate (DUP)
1203518289	393869004(MW-105B) Matrix Spike (MS)
1203518290	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Recounts

Sample 393869005 (MW-107C) was recounted to verify sample result. The recount result is similar to the original result. Original result is reported.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Radiochemistry Technical Case Narrative AMEC Foster Wheeler Environment & Infrastructure (AMEC) SDG #: 393869

Product: Gammaspec, Gamma, Liquid

Analytical Method: EPA 901.1

Analytical Procedure: GL-RAD-A-013 REV# 25

Analytical Batch: 1555988

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample 1D#	Client Sample Identification	•
393869006	SP-1 J & spec	^^
1203518030	Method Blank (MB)	Ylizhe
1203518031	393869006(SP-1) Sample Duplicate (DUP)	1,1011
1203518032	Laboratory Control Sample (LCS)	

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: GFPC, Sr90, liquid

Analytical Method: EPA 905.0 Modified/DOE RP501 Rev. J Modified

Analytical Procedure: GL-RAD-A-004 REV# 17

Analytical Batch: 1556160

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
393869006	SP-1) 50 90
1203518575	Method Blank (MB)
1203518576	393869006(SP-1) Sample Duplicate (DUP)
1203518577	393869006(SP-1) Matrix Spike (MS)
1203518578	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information