Post Closure Groundwater and Surface Water Monitoring Report, Spring 2021 Yankee Nuclear Power Station

Yankee Atomic Electric Company Yankee Nuclear Power Station 49 Yankee Road Rowe, Massachusetts

Prepared by:

Wood Environment & Infrastructure Solutions, Inc. 511 Congress Street Portland, Maine 04101

June 30, 2021

Project Number 3616206117

Post Closure Groundwater and Surface Water Monitoring Report, Spring 2021 Yankee Nuclear Power Station

Prepared for:

Yankee Atomic Electric Company Yankee Nuclear Power Station 49 Yankee Road Rowe, Massachusetts

Prepared by:

Wood Environment & Infrastructure Solutions, Inc. 511 Congress Street Portland, Maine 04101

June 30, 2021

Project Number 3617147318

Charles R Staples

Charles Staples Associate Project Manager

Taque C. Splet

Eugene Shephard Senior Associate Project Manager

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	BACKGROUND	1
3.0	SCOPE OF WORK	2
4.0	FINDINGS	3
4.1	RADIOLOGICAL PARAMETERS	3
4.2	CHEMICAL PARAMETERS	4
5.0	CONCLUSIONS	5
6.0	RECOMMENDATIONS	5
7.0	ACRONYMS	6
8.0	REFERENCES	7

APPENDIX A	MassDEP LETTER TO YNPS DATED FEBRUARY 23, 2016
APPENDIX B	FIELD DATA RECORDS – MAY 2021
APPENDIX C	ANALYTICAL DATA – MAY 2021
APPENDIX C-1	RADIOLOGICAL DATA
APPENDIX C-2	2 CHEMICAL DATA
APPENDIX C-3	3 VALIDATION CHECKLISTS

List of Figures

Figure 1 Sample Locations

List of Tables

- Table 1
 Groundwater and Surface Water Monitoring Program Summary
- Table 2Field Parameter Measurements
- Table 3Summary of Tritium Analytical Data and Trend Analyses
- Table 4Summary of Chemical Data from SCFA Monitoring Wells
- Table 5
 Summary of Chemical Data for SCFA Surface Water Locations
- Table 6Summary of Analytical Data for Sherman Spring Location
- Table 7Monitoring Well Status Update May 2021

1.0 INTRODUCTION

Wood Environment & Infrastructure Solutions, Inc. (Wood) has been contracted by the Yankee Atomic Electric Company (YAEC), owner/operator of the former Yankee Nuclear Power Station (YNPS) to conduct the Post Closure Groundwater and Surface Water Monitoring Program at their site, located at 49 Yankee Road in Rowe, Massachusetts.

YNPS completed its decommissioning in 2007, under the oversight of the Nuclear Regulatory Commission (NRC). However, as part of the closure process, ongoing groundwater and surface water monitoring is still required under the Massachusetts Department of Environmental Protection (MassDEP). This work is to demonstrate that the groundwater is in compliance with the Massachusetts Contingency Plan (MCP) (MassDEP, 2020a) and for post closure monitoring of the Beneficial Use Determination (BUD) Area and the Southeast Construction Fill Area (SCFA). This report presents the findings from samples collected in May 2021 in support of the site closure requirements under the MCP.

2.0 BACKGROUND

Through the site closure process, a comprehensive investigation was conducted to characterize environmental conditions and to develop the conceptual site model, not only to identify source areas and impacted media, but to also describe the fate and transport of both chemicals and radionuclides in soils, groundwater, and surface water. These findings have been published in numerous reports and have achieved the appropriate regulatory approvals. The conceptual site model for groundwater at YNPS was published in the Final Groundwater Conditions Report, submitted to the NRC on February 15, 2007 (YNPS, 2007).

As part of the decommissioning project, 81 groundwater monitoring wells were installed to characterize the hydrogeology, and groundwater quality. Currently, there are 7 wells that remain on site. Of these wells, five groundwater monitoring wells were sampled in May 2021 to demonstrate compliance with the MCP and to support post closure monitoring. Results are presented and discussed below.

3.0 SCOPE OF WORK

Groundwater monitoring for closure under the License Termination Plan (LTP) has been completed. However, groundwater and surface water monitoring is still required to reach closure under the MassDEP and to support post closure monitoring. In keeping with this goal this program was completed in accordance with the MassDEP-approved Groundwater Monitoring Plan to Support Closure under the MCP (ERM, 2007) as modified by the MassDEP by letter dated February 23, 2016 (Appendix A), as well as the Phase II - Comprehensive Site Assessment Report (MassDEP, April 08, 2009).

On February 23, 2016 YNPS received a letter from the MassDEP approving the Minor Modification Permit application, entitled "Proposed 2015 Revisions to the Groundwater and Surface Water Monitoring Program", for the former YNPS in Rowe, MA. The application was prepared by Ransom Consulting, Inc. (Ransom) on behalf of YAEC, the owner of the YNPS. The application proposed to amend the June 19, 2007, MassDEP approval of the Final Post-Closure Groundwater Monitoring Plan (the Groundwater Monitoring Plan) for the YNPS, which addressed environmental monitoring at the Beneficial Use Determination (BUD) Fill Area (the former industrial area) and the Southeast Construction Fill Area (SCFA), in accordance with MassDEP's Solid Waste Regulations at 310 CMR 19.000.

The MassDEP approved the Minor Modification permit subject to a number of conditions and requirements. These conditions and requirements were identified in the MassDEP approval letter (Appendix A) and included a list of locations to be sampled, the frequency of sampling, and for which constituents they were to be analyzed. Additionally, this modification was to be initiated during the 2016 sampling event and continue every five years thereafter; this report describes the second five-year sampling event conducted in 2021. Accordingly, the May 2021 sampling event (the event was delayed with MassDEP concurrence from March 2021 to May 2021 due to COVID-19 concerns and snow and ice conditions at the Site) included the sampling of five monitoring wells, three surface water locations, and one surface water seep location. For the 2021 event, the State of Massachusetts Department of Public Health Environmental Radiation Laboratory. The sampling program is summarized in Table 1. The sampling locations are shown on Figure 1. Groundwater samples were collected in accordance with Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells (USEPA, 2017) and in

accordance with Wood's Site Specific Health and Safety Plan (Wood, 2021). Field data records are presented in Appendix B, and a summary of the field data parameters is presented in Table 2.

During the field effort, locks were replaced on the monitoring wells CFW-1, CFW-5, CFW-6, MW-105B, and MW-107C.

The radiochemistry data were validated in accordance with Site procedure ES-4, Rev. 1 (YNPS, 2021). Chemical analytical data were validated using guidance for Stage 2A data validation (USEPA, 2009) identified in the Region 1 EPA-New England Environmental Data Review Program Guidance (USEPA, 2018) and the USEPA National Functional Guidelines (USEPA, 2017a; USEPA, 2017b). As discussed in the validation report, the surface water samples were initially analyzed for metals using the incorrect fraction (total, dissolved) for some of the metals. This was identified during validation and, as a result, some of the samples were reanalyzed. A summary of the data validation findings and tabulated validated data are provided in Appendix C-1 (radiological), C-2 (chemical), and C-3 (validation checklists).

4.0 FINDINGS

Groundwater samples were submitted for both radiological and chemical parameters. The results and findings from the sampling events are presented in the following subsections.

4.1 RADIOLOGICAL PARAMETERS

Radionuclides in groundwater are compared to the United States Environmental Protection Agency's (USEPA's) Maximum Contaminant Level (MCL). In additional to these criteria, data are also evaluated over time to assess if trends are decreasing, stable, or increasing. Consistent with evaluations presented in previous Annual Post Closure Groundwater and Surface Water Monitoring Reports, a change of 15 percent over previous sampling events has been used to identify trends.

Groundwater samples were collected from two monitoring wells and one surface water seep location for analysis of radionuclides in May 2021. The tritium results are presented on Table 3 with previous data to demonstrate that there continues to be a generally downward and/or stable trend in tritium concentrations. Tritium was not detected in the surface water location sampled during this event.

Consistent with historical results, the highest concentration of tritium was detected at MW-107C at 2,630 picocuries per liter (pCi/L), with lower concentrations reported at monitoring well MW-105B (1,020 pCi/L). The MCL for tritium is 20,000 pCi/L. As shown on Table 3, these detections are consistent with the conceptual site model.

No other radionuclides were detected in any of the groundwater or surface water sample locations sampled during the May 2021 event.

Validated radiological data from the sampling event is provided in Appendix C-1.

4.2 CHEMICAL PARAMETERS

Groundwater chemical data are evaluated using the GW-1 groundwater standards (310 CMR 40.0974(2)) (MassDEP, 2020a). For the analyses where GW-1 standards are not published, data are compared to Massachusetts MCLs or Massachusetts Secondary MCLs (SMCLs) (MassDEP, 2020b). Surface water chemical data are evaluated using USEPA Ambient Water Quality Criteria (AWQC) (USEPA, 2021). For the analyses where AWQC are not published, data are compared to Massachusetts MCLs or SMCLs (MassDEP, 2020b).

<u>Former Southeast Construction Fill Area.</u> Samples were collected from three groundwater monitoring wells (CFW-1, CFW-5, and CFW-6) and three surface water locations (SW-1, SW-4 and SW-5) to assess the potential environmental impacts from the Former SCFA. A summary of the sampling program is presented in Table 1.

Several metals and other naturally occurring compounds were detected in both groundwater and surface water samples; however, the concentrations are consistent with background and historical data, with the exception of iron, which was elevated compared to historical data. Only iron and manganese were detected at concentrations that exceed the SMCLs. SMCLs are used to assess the aesthetic qualities of drinking water and are not health-based standards; concentrations that exceed SMCLs are not necessarily indicative of potential health risks.

The surface water samples were also analyzed for 1,4-dioxane. 1,4-dioxane was not detected in any of the surface water samples from the SCFA.

A summary of the groundwater data for wells downgradient of the SCFA is presented on Table 4. A summary of the surface water data for locations associated with the SCFA is presented in Table 5.

<u>Sherman Spring.</u> Sampling was completed at the Sherman Spring surface water location (SP-1) and samples were analyzed for VOCs, 1,4-dioxane, and total Resource Conservation and Recovery Act (RCRA) 8 metals. Barium was detected below applicable criteria. Other results were reported as not detected. A summary of the analytical data for Sherman Spring (including radiological parameters) is presented in Table 6.

5.0 CONCLUSIONS

The results from the May 2021 groundwater sampling event were consistent with the approved conceptual site model. Based on the data collected during the May 2021 sampling event, tritium concentrations continue to be stable or decreasing across the site, with the highest concentration reported at MW-107C at an activity of 2,630 pCi/L compared to the MCL of 20,000 pCi/L.

No additional sampling is warranted at this time. In accordance with the Post Closure Groundwater and Surface Water Monitoring Plan, the next groundwater sampling event is scheduled for the spring of 2026.

6.0 **RECOMMENDATIONS**

As the groundwater monitoring program is progressing, wells that are no longer part of the active network were recommended for closure in accordance with MassDEP Guidelines as described in previous reports (most recent report – Amec Foster Wheeler, 2016). Table 7 summarizes the status of each monitoring well at the Site as of May 2021. The monitoring wells remaining at the site include five wells that are sampled as part of the long-term monitoring program (CFW-1, CFW-5, CFW-6, MW-105B, and MW-107C) as well as two wells (MW-104A and MW-106A,), that are no longer sampled but, at the request of MassDEP, are kept active for potential future sampling events. In consultation with the MassDEP, YAEC maintenance responsibilities for the wells that will be left for possible future monitoring will be to protect from damage, and complete a visual inspection and lock replacement once every three years, which began in 2012 (MassDEP, 2011).

7.0 ACRONYMS

Wood	Wood Environment & Infrastructure Solutions, Inc.
AWQC	Ambient Water Quality Criteria
BUD	Beneficial Use Determination
LTP	License Termination Plan
MassDEP	Massachusetts Department of Environmental Protection
MCL	Maximum Contaminant Level
MCP	Massachusetts Contingency Plan
mg/L	milligrams per liter
NRC	Nuclear Regulatory Commission
pCi/L	picocuries per liter
Ransom	Ransom Consulting Inc.
RCRA	Resource Conservation and Recovery Act
SCFA	Southeast Construction Fill Area
SMCL	Secondary Maximum Concentration Limit
USEPA	United States Environmental Protection Agency
VOC	volatile organic compound
YAEC	Yankee Atomic Electric Company
YNPS	Yankee Nuclear Power Station

8.0 **REFERENCES**

- Amec Foster Wheeler, 2016. 2016 Groundwater Monitoring Well Decommissioning Completion Report – Yankee Nuclear Power Station. September 2016.
- ERM 2007. Groundwater Monitoring Plan to Support Closure under the Massachusetts Contingency Plan, Yankee Nuclear Power Station, Site Closure Project, Rowe, Massachusetts, June 2007.
- MassDEP, 2020a. Massachusetts Contingency Plan, 310 CMR 40.000. March 20, 2020.
- MassDEP, 2020b. Standards and Guidelines for Contaminants in Massachusetts Drinking Waters. Winter 2020. Department of Environmental Protection, Office of Research and Standards.
- MassDEP, 2009. Phase II Comprehensive Site Assessment Report, April 8, 2009.
- MassDEP, 2011. Letter from Massachusetts Department of Environmental Protection to Yankee Atomic Electric Company dated December 6, 2011.
- MassDEP, 2016. Letter from Massachusetts Department of Environmental Protection to Yankee Atomic Electric Company dated February 23, 2016.
- USEPA, 2009. "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use"; Office of Solid Waste and Emergency Response; EPA-540-R-08-005; January 2009.
- USEPA, 2017a. "USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Data Review"; Office of Emergency and Remedial Response; EPA-540-/R-2017-002; January 2017.
- USEPA, 2017b. "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Methods Data Review"; Office of Superfund Remediation and Technology Innovation; EPA-540-R-2017-001; January 2017.
- USEPA, 2018. "Region I EPA-New England Environmental Data Review Program Guidance"; Office of Environmental Measurement and Evaluation (OEME); June 2018.
- USEPA, 2017. Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Ground Water Monitoring Wells, July 1996, Revised September 2017.
- USEPA. 2021. National Recommended Water Quality Criteria Aquatic Human Health Criteria Table. Available at: https://www.epa.gov/wqc/national-recommended-waterquality-criteria-human-health-criteria-table. Accessed June 21, 2021
- YNPS, 2007. Final Groundwater Conditions Report, Yankee Nuclear Power Station, Rowe, Massachusetts, February 15, 2007.

- YNPS, 2021. Groundwater Monitoring Program, ES-4, Rev. 1, ISFSI Procedure, February 5, 2021.
- Wood, 2021. Short Form Health and Safety Plan, Yankee Nuclear Power Station, Rowe, Massachusetts, March 2021.

Figures

Tables

Table 1 Groundwater and Surface Water Monitoring Program Summary May 2021

Yankee Nuclear Power Station Rowe, Massachusetts

			Analysis Method	VOC - (8260 with TICs) ¹	1,4-Dioxane (8270 SIM)	Calcium, Iron, Manganese	RCRA 8 Metals - (6020A/7470)	Alkalinity - (SM2320B)	COD - (EPA 410.4)	Radionuclides _ (Gamma Spec) ^{2, 3} (EPA 901.1)	Strontium- 90 - (GPC, LSC) Hard to Detect (EPA 901.1)	Tritium - (LSC)- Hard to Detect (EPA 906.0)	D.O., ORP, S.C., Temp., NTU (field parameters)
			Fraction	Т	Т	Т	D (Field)	Т	Т	Т	Т	Т	
		Bottle Size (Qty p	per Sample)	40 (3)	250 (2)	250 (1)	250 (1)	250 (1)	125 (1) ⁴	2 (1) ⁴	1 (1) ⁴	250 (1) ⁴	
		Bottle	e Size Units	mL	mL	mL	mL	mL	mL	Liter	Liter	mL	
		Bot	ttle Material	Glass Vial	Amber glass	Poly	Poly	Poly	Poly	Poly	Poly	Amber Glass	
		P	reservative	HCI	NaHSO4	HNO3	HNO3	4 Deg C	H2SO4	HNO3	HNO3	None	
		-	Lab ID	GEL	Eurofins	GEL	GEL	GEL	GEL	GEL	GEL	GEL	FIELD
Media	Loc Name	Field Sample ID	QC Code										
GW	CFW-1	CFW-1	FS			Х		х	х				Х
GW	CFW-5	CFW-5	FS			Х		Х	Х				х
GW	CFW-5	CFW-5DUP	FD			Х		Х	Х				
GW	CFW-5	CFW-5MS	MS			Х		Х	Х				
GW	CFW-5	CFW-5MSD	MSD			Х		Х	Х				
GW	CFW-6	CFW-6	FS			Х		Х	Х				Х
GW	MW-105B	MW-105B	FS									Х	Х
GW	MW-107C	MW-107C	FS									Х	Х
SW	Sherman Spring	SP-1	FS	Х	Х		Х			Х	Х	Х	Х
SW	SW-1	SW-1	FS	Х	Х	Х	х	Х	Х				х
SW	SW-4	SW-4	FS	Х	Х	х	х	Х	Х				х
SW	SW-5	SW-5	FS	х	х	х	х	Х	х				х
QC	EB-006	EB-006	EB									Х	
QC	TB-009	TB-009	TB	Х									
QC	TB-010	TB-010	TB	Х									
TOTAL				6	4	9	4	9	9	1	1	4	9

Prepared/Date: JAR 02/23/21 Checked/Date: CRS 02/23/21

Notes:

¹ = VOCs shall be performed as outlined in 310 CMR 19.132(h)(1-3), specifically methyl ethyl ketone, methyl isobutyl ketone, acetone, and 1,4-dioxane shall be included, and unknown peaks having intensities greater than 5 times the background intensity shall be identified (TICs)

² = Radiological analysis by Gamma Spectroscopy shall at a minimum quantify the radionuclides Ag-108m, Cs-134, Cs-137, Co-60, Eu-152, Eu-154, Eu-155, Nb-94, and Sb-125; also any other plant-related radionuclides detected by gamma spectroscopy above MDAs shall be reported as part of these analyses

As outlined in 310 CMR 19.132(i), detection limits for all parameters tested in groundwater samples shall be at or below the Massachusetts Drinking Water Standards & Guidelines (Maximum Contaminant Levels, or MCLs), including the 1,4-dioxane MCL of 0.3 micrograms/liter (ug/l)

³ = Sample volume needed per sample is 2 L for Gamma Spectroscopy

⁴ = Sample volume includes volume needed for QC samples, if applicable, for rad parameters and COD

4 Deg C COD	4 Degrees Celsius chemical oxygen demand	NaHSO4 mL	Sodium Bisulfate milliliter
D	Dissolved	MS	Matrix Spike
EB	Equipment Blank	MSD	Matrix Spike Duplicate
FD	Field Duplicate	NaOH	Sodium Hydroxide
FS	Field Sample	QC	Quality Control
GEL	General Engineering Laboratories	RCRA	Resource Conservation and Recovery Act
GPC	Gross Proportional Counter	SW	Surface Water Sample
GW	Groundwater Sample	Т	Total
H2SO4	Sulfuric Acid	TB	Trip Blank
HCI	Hydrochloric Acid	TICs	Tentatively Identified Compounds
HNO3	Nitric Acid	VOC	volatile organic compound
LSC	Liquid Scintillation Counter	Х	indicates parameter scheduled for analysis.

Table 2Field Parameter Measurements

Post Closure Groundwater and Surface Water Monitoring Report Spring 2021 Yankee Nuclear Power Station Rowe, Massachusetts

	Parameter	Conductivity	DO	Eh	pН	Temperature	Turbidity
	Units	µSiemens/cm	mg/L	mv	S.U.	Deg C	NTUs
Field Sample ID	Sample Date						
CFW-1	5/20/2021	0.025	2.8	132	4.3	10	
CFW-5	5/19/2021	0.292	1.0	71	5.7	10	10.0
CFW-6	5/19/2021	0.08	4.9	142	4.9	10	1.9
MW-105B	5/19/2021	0.537	0.7	-188	7.4	14	1.2
MW-107C	5/19/2021	0.386	1.5	0	7.2	14	3.8
SW-1	5/20/2021	0.023	10.5	212	4.7	10	1.5
SW-4	5/20/2021	0.03	11.4	173	5.0	20	3.7
SW-5	5/20/2021	0.03	10.8	175	5.7	12	8.8
						Prepared/Date:	TDL 06/18/21

Checked/Date: ESS 06/21/21

Notes:

Deg C - Degrees Celsius

DO - dissolved oxygen

Eh - oxidation/reduction potential

 $\mu Siemens/cm \text{ - microseimens per centimeter}$

mg/L - milligrams per liter

mv - millivolts

NTUs - Nephlemetric Turbidity Units

S.U. - Standard Units

-- = well was purged dry prior to sampling; turbidity was not recorded on

the sampled water; value was 401 NTU's at end of purging

P:\Projects\3616206117 - YAEC Yankee Rowe\4.0_Deliverables\4.1_Reports\May 2021 GW Sampling Report\ Table 2 - Field Paramter Measurements 2021 Page 1 of 1

Table 3 Summary of Tritium Analytical Data and Trend Analysis

Post Closure Groundwater and Surface Water Monitoring Report Spring 2021 Yankee Nuclear Power Station Rowe, Massachusetts

	Aug-03	Sep-03	Nov-03	Mar-04	May-04	Dec-06	Mar-07	Mar-08	Mar-09	Mar-10	Mar-12	Mar-14	Mar-16	May-21	Trend
Location	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	Analysis*						
CFW-5	-		-		-	-	392	-	-						Not sampled this event
CFW-6	-		-		-	581	4000/4210	-	2440						Not sampled this event
MW-102D						6530	8580	1590	-	-					Not sampled this event
MW-104A						2850	3100/2930	1850	831/900	967/774	456 / -	- / -			Not sampled this event
MW-105B	4850		5220	4890	4530	2900	3440	4710	3490	3890	2500	1640	1460	1020	Decrease
MW-106A						3010	- /2850	846	484	530	-	-			Not sampled this event
MW-107C		48000	45780	8880**	39020	29100	30900	25700	21300	20100	11400	8910	6330	2630	Decrease
MW-107D		9150	9710	5940	10910	9310	9440	9380	8210	7280					Not sampled this event
MW-107E						5700	6420	5060 / 5160	4650	5470					Not sampled this event
MW-107F						9210	9220	9890	8150	8940					Not sampled this event
Monroe Dam									-	-	-	-			Not sampled this event
SP-1	-		-	210	890	1100	452	-	-	244	-	-	-	-	Not detected
SW-011									-	-	-				Not sampled this event
SW-408									-	-	-				Not sampled this event

* Trend analysis is based on a concentration change of greater than 15% from previous four events.
** Result outside expected range and considered questionable. Subsequent results match conceptual site model.

967/774 - shows sample and duplicate sample

"-" signifies concentration less than minimum detectable activity

pCi/L - picocuries per liter

blank cells = not analyzed

Prepared/Date: CRS 06/18/21 Checked/Date: ESS 06/21/21

Post Closure Groundwater and Surface Water Monitoring Report Spring 2021 Yankee Nuclear Power Station Rowe, Massachusetts

		Location	CFW-1	CFW-1	CFW-1	CFW-1	CFW-1	CFW-1							
		Sample Date	8/7/2003	8/18/2004	8/19/2005	8/25/2005	9/18/2006	9/19/2006	3/15/2007	3/16/2007	3/25/2008	3/11/2009	3/3/2010	3/8/2012	3/5/2014
		Sample ID	CFW-1-080703	CFW-1-081804	CFW-1-081905	CFW-1-082505	CFW-1-091806	CFW-1-091906	CFW-1-031507	CFW-1-031607	CFW-1	CFW-1	CFW-1	CFW-1	CFW-1
		Qc Code	FS	FS	FS	FS	FS	FS							
Analysis	Parameter	MCP Criteria													
VOCs	4-Methyl-2-pentanone	0.35	-	-	0.0014 J		-		-		-	-	-	-	-
	Acetone	6.3	R	-	-		R		-		0.0027	-	-	-	-
	Chloromethane	NA	-	0.00069 J	0.0007 J		-		-						
	Methylene chloride	0.005	-	-	-		-		-		-	-	-	-	-
	Naphthalene	0.14	-		-		-		-		-	-	-	-	-
	Toluene	1	-	0.00043 J	-		-		-		-	-	-	-	-
Metals	Arsenic	0.01	-	-	-			-		-	-	-	-	-	-
	Barium	2	0.017	0.014	0.012			0.0451		0.0138	-	-	-	0.0248	0.0417
	Cadmium	0.005	-	-	-			-		0.0005 J	-	-	-	-	-
	Calcium	NA								1.83	1.5	1.7	1.3	1.9	2.51
	Chromium	0.1	-	-	-			0.0036 J		-	-	-	-	0.00263 J	0.00673 J
	Copper	1.3	-	-	-			0.0091		0.0026 J	-	-	-	0.00406	0.00752
	Iron	0.3*	1.8	1.2 J	0.706 J			10.7		1.98	5.8 J	3.6 J	5.7	9.15	13.4
	Lead	0.015	-	-	-			0.0056 J		0.0041 J	-	-	-	0.0012 J	0.002
	Manganese	0.05*	0.047	0.11	0.0533			0.305		0.12	0.15	0.14	0.2	0.22	0.233
	Mercury	0.002	-	-	-			-		-	-	-	-	-	-
	Selenium	0.05	-	-	-			-		-	-	-	-	-	-
	Silver	0.1	-	-	-			-		0.0013 J	-	-	-	-	0.00134
	Sodium	NA								1.28	0.94	-	0.81	0.958	0.935
	Zinc	5	-	-	-			-		0.0126	-	-	-	0.0142	0.0189
Cyanide	Cyanide, Total	0.2									-	-	-	-	-
Wet Chemistry	Total Alkalinity, as CaCO3	NA	6	5.1	7		5		7.14		3.4	3.4 J	4.6	5.64	4.07 J
	Chemical Oxygen Demand	NA	-	-	-		14.4			17.8	-	-	-	13.2 J	6.9 J
	Chloride	250*	-	-	-		-		0.67 J		-	-	-	0.6	0.594
	Nitrate as N	10	-	-		-		0.08 J		-	-	-	-	-	-
	Sulfate	250*	4.4 J	4.9	3.81 J		3.7		3.32		3.2	3.3	2.6	2.78	3.43
	Total Dissolved Solids	500*	-	4	22	13		29		12	46	1	-	15 J	8.57 J

Notes:

All results in milligrams per liter (mg/L) **Bold Italics** indicates an exceedance of applicable criteria.

Applicable criteria is the MCP GW-1 standard (310 CMR 40.0974(2); effective

2/14/2008) and, if not available, the Maximum Contaminant Level or Secondary Maximum Contaminant Level (SMCL) (MADEP, 2020)

* indicates SMCL; not a health-based standard

FD - Field Duplicate

FS - Field Sample

J - estimated value

NA - Not Available

QC - Quality Control

R - data rejected during validation; unusable

VOCs - volatile organic compounds

"-" indicates analyte not detected

Post Closure Groundwater and Surface Water Monitoring Report Spring 2021 Yankee Nuclear Power Station Rowe, Massachusetts

		Location	CFW-1	CFW-1	CFW-5	CFW-5	CFW-5	CFW-5	CFW-5	CFW-5						
		Sample Date	3/24/2016	5/20/2021	8/5/2003	3/22/2004	6/8/2004	8/18/2004	8/17/2005	9/13/2006	3/8/2007	3/26/2008	3/26/2008	3/10/2009	3/10/2009	3/2/2010
		Sample ID	CFW-1	CFW-1	CFW-5-080503	CFW-5-032204	CFW-5-060804	CFW-5-081804	CFW-5-081705	CFW-5-091306	CFW-5-030807	CFW-5	CFW-5 DUP	CFW-5	CFW-5DUP	CFW-5
		Qc Code	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FD	FS	FD	FS
Analysis	Parameter	MCP Criteria														
VOCs	4-Methyl-2-pentanone	0.35			-			-	0.0006 J	-	-	-	-	-	-	-
	Acetone	6.3			-			-	-	R	-	-	-	-	-	-
	Chloromethane	NA			-			0.00069 J	0.0009 J	-	-					
	Methylene chloride	0.005			-			-	-	-	-	-	-	-	-	-
	Naphthalene	0.14			-				-	-	-	-	-	-	-	-
	Toluene	1			-			-	-	-	-	-	-	-	-	-
Metals	Arsenic	0.01			-			-	-	-	0.0063	-	-	-	-	-
	Barium	2			0.043			0.061	0.0612	0.0638	0.0537	-	-	0.051	0.052	0.053
	Cadmium	0.005			-			-	-	-	-	-	-	-	-	-
	Calcium	NA	2.79	1.58		19.3	21.4				29.1	16	15	28	28	28
	Chromium	0.1			-			-	-	-	-	-	-	-	-	-
	Copper	1.3			-			-	-	-	-	-	-	-	-	-
	Iron	0.3*	15.3	7.37	38	26.2	27.2	67	89.2	75.1	70.6	32 J	<i>31</i> J	65 J	63 J	70
	Lead	0.015			R			-	-	0.0036 J	-	-	-	-	-	-
	Manganese	0.05*	0.346	0.203	3.5	2.42	2.58	4.4	4.16 J	4.62	4.28	1.9	1.8	3.7	3.7	3.8
	Mercury	0.002			-			-	-	-	-	-	-	-	-	-
	Selenium	0.05			-			-	-	0.007 J	-	-	-	-	-	0.021 J
	Silver	0.1			-			-	-	-	-	-	-	0.017	0.018	-
	Sodium	NA									3.71	1.8	1.6	-	-	2.9
	Zinc	5			-			-	-	-	-	-	-	-	-	-
Cyanide	Cyanide, Total	0.2										-	-	0.012	0.012	-
Wet Chemistry	Total Alkalinity, as CaCO3	NA	5.22	5.74	87	92.8	87.6	93	101	130	127	69	63	130 J	170 J	110
	Chemical Oxygen Demand	NA	38	-	26	20.8	23.7	32	27.3	36.9	51.9	18	17	35	30	29
	Chloride	250*			-			2.7	1.91	15.5 J	9.12	2.3	2.2	4.8	4.2	5.1 J
	Nitrate as N	10			- 1			-	-	-	0.04 J	-	-	-	-	-
	Sulfate	250*			1.2			1.2	0.58 J	-	0.44 J	2.3	2.3	-	-	-
	Total Dissolved Solids	500*			120			200	111	170	170	110	100	110	150	130 J

Notes:

All results in milligrams per liter (mg/L) Bold Italics indicates an exceedance of applicable criteria.

Applicable criteria is the MCP GW-1 standard (310 CMR 40.0974(2); effective

2/14/2008) and, if not available, the Maximum Contaminant Level or Secondary Maximum Contaminant Level (SMCL) (MADEP, 2020)

* indicates SMCL; not a health-based standard FD - Field Duplicate

FS - Field Sample

J - estimated value

NA - Not Available

QC - Quality Control R - data rejected during validation; unusable

VOCs - volatile organic compounds

"-" indicates analyte not detected

blank cells = not analyzed

P:\Projects\3616206117 - YAEC Yankee Rowe\4.0_Deliverables\4.1_Reports\May 2021 GW Sampling Report\ Table 4 - Southeast Construction Fill Area Chem 2021

Post Closure Groundwater and Surface Water Monitoring Report Spring 2021 Yankee Nuclear Power Station Rowe, Massachusetts

		Location	CFW-5	CFW-5	CFW-5	CFW-5	CFW-5	CFW-5	CFW-5	CFW-5	CFW-5	CFW-6	CFW-6	CFW-6	CFW-6	CFW-6	CFW-6
		Sample Date	3/2/2010	3/6/2012	3/6/2012	3/4/2014	3/4/2014	3/24/2016	3/24/2016	5/19/2021	5/19/2021	8/11/2003	8/18/2004	8/24/2005	8/24/2005	4/19/2006	9/13/2006
		Sample ID	CFW-5 Dup	CFW-5	CFW-5DUP	CFW-5	CFW-5 DUP	CFW-5	CFW-5 DUP	CFW-5	CFW-5 DUP	CFW-6-081103	CFW-6-081804	FD001-082405	CFW-6-082405	CFW-6-042006	CFW-6-091306
		Qc Code	FD	FS	FD	FS	FD	FS	FD	FS	FD	FS	FS	FD	FS	FS	FS
Analysis	Parameter	MCP Criteria															
VOCs	4-Methyl-2-pentanone	0.35	-	-	-	-	-					-	-	0.0009 J	0.0008 J	-	-
	Acetone	6.3	-	-	-	-	-					-	-	-	0.008 J	0.0026 J	R
	Chloromethane	NA										-	-	-	-	-	-
	Methylene chloride	0.005	-	-	-	0.00159 J	0.00165 J					-	-	-	-	-	-
	Naphthalene	0.14	-	-	-	-	-					-		-	-	-	-
	Toluene	1	-	-	-	-	-					-	-	-	-	-	-
Metals	Arsenic	0.01	-	-	-	-	-					-	-	-	-	-	-
	Barium	2	0.053	0.0681	0.0685 J	0.0487	0.0489					0.069	0.077	0.0641	0.0629		0.0544
	Cadmium	0.005	-	-	-	-	-					-	-	-	-	-	-
	Calcium	NA	27	31.9	33 J	28.3	28.7	19.3	21.4	27.2	28.4						
	Chromium	0.1	-	-	-	-	-					-	-	-	-	-	0.0024 J
	Copper	1.3	-	-	-	-	-					-	-	-	-	-	-
	Iron	0.3*	71	85.5	86.4 J	45.7	47.4	26.2	27.2	33.9	35.4	67	<i>51</i> J	71.5	71		64.6
	Lead	0.015	-	-	-	-	-					-	-	-	-	-	0.0031 J
	Manganese	0.05*	3.7	5.32	5.36 J	3.61	3.76	2.42	2.58	2.66	2.72	8.8	6.9	7.65	7.54		6.69
	Mercury	0.002	-	-	-	-	-					-	-	-	-	-	0.00018 J
	Selenium	0.05	0.022 J	-	-	-	-					-	-	-	-	-	0.0091 J
	Silver	0.1	-	-	-	-	-					-	-	-	-	-	-
	Sodium	NA	2.9	3.11	2.95 J	2.36	2.29										
	Zinc	5	-	-	-	-	-					-	-	-	-	-	0.0134
Cyanide	Cyanide, Total	0.2	-	-	-	-	-										
Wet Chemistry	Total Alkalinity, as CaCO3	NA	140	R	152	136 J	139 J	92.8	87.6	115	119	100	110	136	116		108
	Chemical Oxygen Demand	NA	26	59.7	52.7	34.4	34.4	20.8	23.7	41.6	45.8	38	33	30.1	31.8		35.1
1	Chloride	250*	5 J	R	3.92	1.37	1.37					-	2.3	9.12	7.79		14.7 J
1	Nitrate as N	10	-	R	-	-	-					-	-	-	-		0.04 J
1	Sulfate	250*	-	R	0.557	0.226 J	0.249 J					-	-	-	-		-
	Total Dissolved Solids	500*	140 J	R	180	163	190					180	200	204	214		147

Notes:

All results in milligrams per liter (mg/L) **Bold Italics** indicates an exceedance of applicable criteria.

Applicable criteria is the MCP GW-1 standard (310 CMR 40.0974(2); effective 2/14/2008) and, if not available, the Maximum Contaminant Level or Secondary

Maximum Contaminant Level (SMCL) (MADEP, 2020)

* indicates SMCL; not a health-based standard

FD - Field Duplicate

FS - Field Sample

J - estimated value

NA - Not Available

QC - Quality Control

R - data rejected during validation; unusable

VOCs - volatile organic compounds

"-" indicates analyte not detected

Post Closure Groundwater and Surface Water Monitoring Report Spring 2021 Yankee Nuclear Power Station Rowe, Massachusetts

		Location	CFW-6	CFW-6	CFW-6	CFW-6	CFW-6	CFW-6	CFW-6	CFW-6	CFW-6	CFW-6	CFW-6
		Sample Date	9/13/2006	3/8/2007	3/8/2007	3/25/2008	3/10/2009	3/2/2010	3/6/2012	3/6/2012	3/5/2014	3/24/2016	5/19/2021
		Sample ID	FD001-091306	CFW-6-030807	FD007-030807	CFW-6	CFW-6	CFW-6	CFW-6	CFW-6	CFW-6	CFW-6	CFW-6
		Qc Code	FD	FS	FD	FS	FS	FS	FS	FS	FS	FS	FS
Analysis	Parameter	MCP Criteria											
VOCs	4-Methyl-2-pentanone	0.35	-	-	-		-	-	-	-	-		
	Acetone	6.3	R	-	-	-	-	-	-	-	-		
	Chloromethane	NA	-	-	-								
	Methylene chloride	0.005	-	-	-	-	0.00071 J	-	-	-	-		
	Naphthalene	0.14	-	-	-	-	-	-	-	-	-		
	Toluene	1	-	-	-	-	-	-	-	-	-		
Metals	Arsenic	0.01	-	0.0054 J	0.0049 J	-	-	-	-	-	-		
	Barium	2	0.0592	0.0612	0.0592	-	-	-	0.0602	0.0647	0.0647		
	Cadmium	0.005	-	0.0005 J	0.0002 J	-	-	-	-	0.000135 J	0.000135 J		
	Calcium	NA		25.5	25.4	7.4	14	14	16.7	15.9	15.9	9.34	10.2
	Chromium	0.1	0.0027 J	0.0022 J	0.0028 J	-	-	-	-	-	-		
	Copper	1.3	-	-	-	-	-	-	-	-	-		
	Iron	0.3*	68.1	56.8	58.8	0.57 J	39 J	20	67.1	35.5	35.5	4.64	3.41
	Lead	0.015	0.003 J	0.0029 J	-	-	-	-	-	-	-		
	Manganese	0.05*	7.2	6.74	6.8	0.2	3.6	2.9	4.93	3.74	3.74	1.33	1.74
	Mercury	0.002	-	0.00006 J	-	-	-	-	-	-	-		
	Selenium	0.05	0.0101 J	-	-	-	-	-	-	-	-		
	Silver	0.1	-	-	-	-	0.013	-	-	-	-		
	Sodium	NA		1.56	1.52	1.3	-	2.7	5.05	4	4		
	Zinc	5	-	-	0.0056	-	-	-	-	0.00581 J	0.00581 J		
Cyanide	Cyanide, Total	0.2				-	-	-	0.00412 J	-	-		
Wet Chemistry	Total Alkalinity, as CaCO3	NA	131	100	128	17	100 J	71	126	108 J	108 J	26.1	31.1
	Chemical Oxygen Demand	NA	36.4	26.3	51.9	27	23	12	59.7	39.4	39.4	40.8	29.1
	Chloride	250*	16.1 J	12.5	11.8	-	3.2	2.7 J	1.53	0.911	0.911		
	Nitrate as N	10	-	0.04 J	0.04 J	-	-	-	-	-	-		
	Sulfate	250*	-	0.7 J	0.68 J	4.7	5.8	4.3 J	0.755	1.49	1.49		
	Total Dissolved Solids	500*	172	189	181	33	77	89 J	187	130	130		

Notes:

All results in milligrams per liter (mg/L) Bold Italics indicates an exceedance of applicable criteria.

Applicable criteria is the MCP GW-1 standard (310 CMR 40.0974(2); effective

2/14/2008) and, if not available, the Maximum Contaminant Level or Secondary

Maximum Contaminant Level (SMCL) (MADEP, 2020)

* indicates SMCL; not a health-based standard

FD - Field Duplicate

FS - Field Sample

J - estimated value

NA - Not Available

QC - Quality Control

R - data rejected during validation; unusable

VOCs - volatile organic compounds

"-" indicates analyte not detected

Post Closure Groundwater and Surface Water Monitoring Report Spring 2021 Yankee Nuclear Power Station Rowe, Massachusetts

		Location	SW-1	SW-1	SW-1	SW-1	SW-1	SW-1	SW-1	SW-2
		Sample Date	3/25/2008	3/10/2009	3/3/2010	3/8/2012	3/5/2014	3/24/2016	5/21/2021	3/25/2008
		Sample ID	SW-1	SW-1	SW-1	SW-1	SW-1	SW-1	SW-1	SW-2
		Qc Code	FS	FS	FS	FS	FS	FS	FS	FS
Analysis	Param Name	Screening Values								
VOCs	Methylene chloride	0.02	-	-	-	-	-	-	-	-
	1,4-Dioxane	0.0003***						-	-	
Metals	Barium	1	-	-	-	0.0123	0.00967	0.00796	0.00956	-
	Calcium	NA	2.5	2.2	2.6	2.39	2.84	1.96	2.21	2.3
	Chromium	0.1	-	-	-	-	0.00215 J	-	-	-
	Iron	0.3**	0.016 J	0.064 J	0.032	0.133	-	-	0.104	0.021 J
	Lead	0.015*						-	-	
	Manganese	0.05**	-	-	-	0.0144	0.0202	0.00312 J	0.0132	-
	Sodium	NA	1.1	-	0.78	0.878	1.1			1.1
	Zinc	7.4	-	-	-	0.00451 J	-			-
Cyanide	Cyanide, Total	0.004	-	-	-	-	-			-
Wet Chemistry	Total Alkalinity, as CaCO3	NA	1.9	2.3	5.4	2.57	4.07 J	3.13	6.53	1.1
	Chemical Oxygen Demand	NA	-	-	-	-	-	18 J	17.2	-
	Chloride	250**	-	-	-	0.591	0.47			-
	Nitrate as N	10	-	-	-	0.25	0.14			-
	Sulfate	250**	5	4.2	5.5	4.97	5.91			5
	Total Dissolved Solids	500**	21	5	19 J	20	4.29 J			54

Notes:

All results in milligrams per liter (mg/L)

Screening value is the USEPA Ambient Water Quality Criteria

(AWQC) and, if not available, the Maximum Contaminant

Level or Secondary Maximum Contaminant Level (MADEP, 2020)

* indicates criteria is Maximum Contaminant Level

** indicates criteria is from the Secondary Maximum

Contaminant Level; not a health-based standard

*** indicates Mass Guideline Value

FS - Field Sample

J - estimated value

NA - Not Available

QC - Quality Control

VOCs - volatile organic compounds

"-" indicates analyte not detected

Post Closure Groundwater and Surface Water Monitoring Report Spring 2021 Yankee Nuclear Power Station Rowe, Massachusetts

		Location	SW-2	SW-2	SW-2	SW-2	SW-2	SW-3	SW-3	SW-3	SW-3
		Sample Date	3/10/2009	3/3/2010	3/8/2012	3/4/2014	3/4/2014	3/25/2008	3/10/2009	3/3/2010	3/8/2012
		Sample ID	SW-2	SW-2	SW-2	SW-2	SW-2	SW-3	SW-3	SW-3	SW-3
		Qc Code	FS	FS	FS	FS	FS	FS	FS	FS	FS
Analysis	Param Name	Screening Values									
VOCs	Methylene chloride	0.02	-	-	-	0.00151 J	0.00151 J	-	-	-	-
	1,4-Dioxane	0.0003***									
Metals	Barium	1	-	-	0.0107	0.0108	0.0108	-	-	-	0.0106
	Calcium	NA	2.1	2.5	1.89	2.25	2.25	2.2	2	2.4	1.95
	Chromium	0.1	-	-	-	-	-	-	-	-	-
	Iron	0.3**	0.063 J	0.037	0.0483 J	-	-	0.029 J	0.061 J	0.5	0.362
	Lead	0.015*									
	Manganese	0.05**	-	-	0.00437 J	0.00835	0.00835	-	-	0.074	0.0242
	Sodium	NA	-	0.8	0.675	0.857	0.857	1.1	-	0.6	0.654
	Zinc	7.4	-	-	0.00491 J	0.00356 J	0.00356 J	-	-	-	0.00362 J
Cyanide	Cyanide, Total	0.004	-	-	-	-	-	-	-	-	-
Wet Chemistry	Total Alkalinity, as CaCO3	NA	2.1	5.4	2.05	-	-	-	1.7	5.6	3.08
	Chemical Oxygen Demand	NA	-	-	-	11.9 J	11.9 J	-	-	-	-
	Chloride	250**	-	-	0.556	0.571	0.571	-	-	-	0.553
	Nitrate as N	10	-	-	0.227	0.0937 J	0.0937 J	-	-	-	0.228
	Sulfate	250**	5.4	5.5	4.26	5.22	5.22	5.9	5.3	4.8	4.28
	Total Dissolved Solids	500**	16	19 J	15.7	5.71 J	5.71 J	8	26	13 J	8.57 J

Notes:

All results in milligrams per liter (mg/L)

Screening value is the USEPA Ambient Water Quality Criteria

(AWQC) and, if not available, the Maximum Contaminant

Level or Secondary Maximum Contaminant Level (MADEP, 2020)

* indicates criteria is Maximum Contaminant Level

** indicates criteria is from the Secondary Maximum

Contaminant Level; not a health-based standard

*** indicates Mass Guideline Value

FS - Field Sample

J - estimated value

NA - Not Available

QC - Quality Control

VOCs - volatile organic compounds

"-" indicates analyte not detected

Post Closure Groundwater and Surface Water Monitoring Report Spring 2021 Yankee Nuclear Power Station Rowe, Massachusetts

		Location	SW-3	SW-4	SW-4	SW-4	SW-4	SW-4	SW-4	SW-4	SW-5
		Sample Date	3/4/2014	3/25/2008	3/10/2009	3/2/2010	3/6/2012	3/4/2014	3/24/2016	5/20/2021	3/25/2008
		Sample ID	SW-3	SW-4	SW-4	SW-4	SW-4	SW-4	SW-4	SW-4	SW-5
		Qc Code	FS	FS	FS	FS	FS	FS	FS	FS	FS
Analysis	Param Name	Screening Values									
VOCs	Methylene chloride	0.02	0.00173 J	-	-	-	-	-	-	-	-
	1,4-Dioxane	0.0003***							-	-	
Metals	Barium	1	0.0103	-	-	-	0.0142	0.0118	0.0107	0.0132	-
	Calcium	NA	2.54	2.6	2.2	2.4	3.12	3.04	2.05	2.94	2.3
	Chromium	0.1	-	-	-	-	-	-	-	-	-
	Iron	0.3**	0.514	<i>1.1</i> J	0.55 J	0.9	2.08	1.81	0.774	12.5	0.26 J
	Lead	0.015*							-	-	
	Manganese	0.05**	0.0661	0.14	0.076	0.13	0.24	0.212	0.107	0.25	0.04
	Sodium	NA	0.893	1.1	-	0.65	0.96	0.967			1
	Zinc	7.4	-	-	-	-	0.00456 J	-			-
Cyanide	Cyanide, Total	0.004	-	-	-	-	-	-			-
Wet Chemistry	Total Alkalinity, as CaCO3	NA	5.6 J	3.5	2.9	6.5	6.67	8.14 J	3.65	8.51	1.5
	Chemical Oxygen Demand	NA	19.4 J	-	-	-	13.2 J	-	-	12.2	-
	Chloride	250**	0.673	-	-	-	0.711	0.61			-
	Nitrate as N	10	0.0986 J	-	-	-	0.205	0.0932 J			-
	Sulfate	250**	5.13	5.1	5.2	4.8 J	4.79	5.05			5
	Total Dissolved Solids	500**	4.29 J	19	35	11 J	28.6	15.7			31

Notes:

All results in milligrams per liter (mg/L)

Screening value is the USEPA Ambient Water Quality Criteria

(AWQC) and, if not available, the Maximum Contaminant

Level or Secondary Maximum Contaminant Level (MADEP, 2020)

* indicates criteria is Maximum Contaminant Level

** indicates criteria is from the Secondary Maximum

Contaminant Level; not a health-based standard

*** indicates Mass Guideline Value

FS - Field Sample

J - estimated value

NA - Not Available

QC - Quality Control

VOCs - volatile organic compounds

"-" indicates analyte not detected

Post Closure Groundwater and Surface Water Monitoring Report Spring 2021 Yankee Nuclear Power Station Rowe, Massachusetts

		Location	SW-5	SW-5	SW-5	SW-5	SW-5	SW-5
		Sample Date	3/10/2009	3/2/2010	3/6/2012	3/4/2014	3/24/2016	5/20/2021
		Sample ID	SW-5	SW-5	SW-5	SW-5	SW-5	SW-5
		Qc Code	FS	FS	FS	FS	FS	FS
Analysis	Param Name	Screening Values						
VOCs	Methylene chloride	0.02	-	-	-	-	-	-
	1,4-Dioxane	0.0003***					-	-
Metals	Barium	1	-	-	0.0126	0.0105	0.00999	0.0126
	Calcium	NA	2.2	2	2.77	2.33	1.8	3.56
	Chromium	0.1	-	-	-	-	-	-
	Iron	0.3**	0.48 J	0.27	1.52	0.496	0.265	30.7
	Lead	0.015*					-	-
	Manganese	0.05**	0.071	0.044	0.141	0.0657	0.04	0.338
	Sodium	NA	-	0.6	0.883	0.859		
	Zinc	7.4	-	-	-	-		
Cyanide	Cyanide, Total	0.004	-	-	-	-		
Wet Chemistry	Total Alkalinity, as CaCO3	NA	2.7	4.3	13.9	3.56 J	2.09	9.31
	Chemical Oxygen Demand	NA	-	-	13.2 J	31.9	29.4	12.2
	Chloride	250**	-	-	0.662	0.526		
	Nitrate as N	10	-	-	0.195	0.087 J		
	Sulfate	250**	5.3	4.2 J	4.67	4.72		
	Total Dissolved Solids	500**	3	4 J	20	37.1		

Notes:

All results in milligrams per liter (mg/L)

Screening value is the USEPA Ambient Water Quality Criteria

(AWQC) and, if not available, the Maximum Contaminant

Level or Secondary Maximum Contaminant Level (MADEP, 2020)

* indicates criteria is Maximum Contaminant Level

** indicates criteria is from the Secondary Maximum

Contaminant Level; not a health-based standard

*** indicates Mass Guideline Value

FS - Field Sample

J - estimated value

NA - Not Available

QC - Quality Control

VOCs - volatile organic compounds

"-" indicates analyte not detected

Table 6 Summary of Analytical Data for Sherman Spring Location

Post Closure Groundwater and Surface Water Monitoring Report Spring 2021 Yankee Nuclear Power Station Rowe, Massachusetts

		Location ID	S	P-1	S	P-1	S	P-1	SI	P-1	SF	P-1
		Sample ID	SP-1-05	0404-RN	SP-1-(00	5)-120406	SP-1-N	IF-(007)	SI	P-1	SF	P-1
		Sample Date	5/4,	/2004	12/4	/2006	3/6/	/2007	3/26	/2008	3/11	/2009
		QC Code	FS		FS		FS		FS		FS	
Analysis	Units	Screening Value	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
VOCs	ug/L	NA							-		-	
Metals												
Barium	mg/L	1							-		-	
Lead	mg/L	0.015*							-		-	
Silver	mg/L	0.1**							-		-	
Radionuclides (Gamma Spec)											
Cesium-137	pCi/L	200	-				-		-		-	
Cobalt-60	pCi/L	100	2.9)			-		-		-	
Strontium-90	pCi/L	8	-				-		-		-	
Tritium	pCi/L	20,000	890)	1100	3,D	452		-		-	
1,4-Dioxane	ug/L	0.3****							-		-	

Notes:

Only historically detected compounds shown (with exception of VOCs)

Units: mg/L = milligrams per liter; pCi/L = picocuries per liter

ug/L = micrograms per liter

Screening value is the USEPA Ambient Water Quality Criteria

(AWQC) and, if not available, the Maximum Contaminant

Level or Secondary Maximum Contaminant Level (MADEP, 2020)

* indicates criteria is Maximum Contaminant Level

** indicates criteria is from the Secondary Maximum

Contaminant Level; not a health-based standard

*** indicates Mass Guideline Value

FS - Field Sample

J - estimated value

NA - Not Available

QC - Quality Control

VOCs - volatile organic compounds

"-" indicates analyte not detected

Table 6 Summary of Analytical Data for Sherman Spring Location

Post Closure Groundwater and Surface Water Monitoring Report Spring 2021 Yankee Nuclear Power Station Rowe, Massachusetts

		Location ID	SP-1		SP-1		SP-1		SP-1		SP-1		SP-1	
		Sample ID	SP-1		SP-1		SP-1		SP-1		SP-1		SP-1	
		Sample Date	3/3/2010		3/8/2012		4/24/2012		3/4/2014		3/23/2016		5/20/2021	
		QC Code	FS		FS		FS		FS		FS		FS	
Analysis	Units	Screening Value	Result Qualifier		Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
VOCs	ug/L	NA			-				-		-		-	
Metals														
Barium	mg/L	1	0.026		0.028		0.023		0.0221		0.0222			
Lead	mg/L	0.015*	-		0.000881 J			-		-		-		
Silver	mg/L	0.1**	-		-				0.000627 J		-		-	
Radionuclides (Gamma Spec)													
Cesium-137	pCi/L	200	-		6.11		-		-		-		-	
Cobalt-60	pCi/L	100	-		-				-		-		-	
Strontium-90	pCi/L	8	-		-				-		-		-	
Tritium	pCi/L	20,000	244		-				-		-		-	
1,4-Dioxane	ug/L	0.3****	-		-				-		0.087	J	-	

Notes:

Only historically detected compounds shown (with exception of VOCs)

Units: mg/L = milligrams per liter; pCi/L = picocuries per liter

ug/L = micrograms per liter

Screening value is the USEPA Ambient Water Quality Criteria

(AWQC) and, if not available, the Maximum Contaminant

Level or Secondary Maximum Contaminant Level (MADEP, 2020)

* indicates criteria is Maximum Contaminant Level

** indicates criteria is from the Secondary Maximum

Contaminant Level; not a health-based standard

*** indicates Mass Guideline Value

FS - Field Sample

J - estimated value

NA - Not Available

QC - Quality Control

VOCs - volatile organic compounds

"-" indicates analyte not detected

Table 7 Monitoring Well Status Update May 2021

Post Closure Groundwater and Surface Water Monitoring Report Spring 2021 Yankee Nuclear Power Station Rowe, Massachusetts

Well ID	Well Diameter	Well Depth (feet)	Protection	Is Well Located in BUD?	Is Well Located in BUDFA?	Surrounding Area	Well Status as of May 2021
CB-3R	2 inch	21	Standpipe	Yes	No	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
CB-4	2.25 inch	20	Road box	No	No	Topsoil, grass seed	Decommissioning activities completed in 2010
CB-6	2 inch	27	Standpipe	No	No Topsoil, grass seed		Decommissioning activities completed in 2010
CB-8	2.5 inch	24.5	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
CW-5R	2 inch	23	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
CW-10	2 inch	31.5	Standpipe	Yes	No	Topsoil, grass seed	Decommissioning activities completed in 2010
CFW-1	2 inch	8	Standpipe	No	No	Topsoil, grass seed	Part of long-term monitoring program
CFW-5	2 inch	5	Standpipe	No	No	Topsoil, grass seed	Part of long-term monitoring program
CFW-6	2 inch	6	Standpipe	No	No	Topsoil, grass seed	Part of long-term monitoring program
HA-1	Unknown	18	Standpipe	Yes	No	Topsoil, grass seed	Proposed for grouting 2012 but well could not be located. It is believed that it was a temporary well and was previously removed.
MW-6R	2 inch	22	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-100A	2 inch	20	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-100B	2 inch	43	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-101A	2 inch	25	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-101B	2.25 inch	156	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-101C	2 inch	99	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-102A	2 inch	39	Standpipe	Yes	Yes Topsoil, grass seed		Monitoring well grouted to the surface in 2016
MW-102B	2 inch	131.5	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2016
MW-102C	2 inch	99	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2016
MW-102D	2 inch	21	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-103A	2 inch	26	Standpipe	No	No	Topsoil, grass seed	Decommissioning activities completed in 2010
MW-103B	2.25 inch	295	Standpipe	No	No	Topsoil, grass seed	Decommissioning activities completed in 2010
MW-103C	2 inch	125	Standpipe	No	No	Topsoil, grass seed	Decommissioning activities completed in 2010
MW-104A	2 inch	20	Standpipe	Yes	No	Topsoil, grass seed	Leave for possible future sampling
MW-104B	2.25 inch	194.5	Standpipe	Yes	No	Topsoil, grass seed	Monitoring well grouted to the surface in 2010
MW-104C	2.25 inch	99	Standpipe	Yes	No	Topsoil, grass seed	Monitoring well grouted to the surface in 2010
MW-104D	2 inch	45	Standpipe	Yes	No	Topsoil, grass seed	Monitoring well grouted to the surface in 2010
MW-105A	2 inch	20	Standpipe	Yes	No	Topsoil, grass seed	Monitoring well grouted to the surface in 2016
MW-105B	2 inch	75	Standpipe	Yes	No	Topsoil, grass seed	Part of long-term monitoring program
MW-105C	2 inch	45	Standpipe	Yes	No	Topsoil, grass seed	Monitoring well grouted to the surface in 2016
MW-106A	2 inch	22	Road box	No	No	Topsoil, grass seed	Leave for possible future sampling
MW-106B	2.25 inch	265	Road box	No	No	Topsoil, grass seed	Decommissioning activities completed in 2010
MW-106C	2 inch	95	Road box	No	No	Topsoil, grass seed	Decommissioning activities completed in 2010
MW-106D	2.25 inch	155	Road box	No	No	Topsoil, grass seed	Decommissioning activities completed in 2010
MW-107A	2 inch	25	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-107B	2.25 inch	110	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2016
MW-107C	2 inch	32	Standpipe	Yes	Yes	Part of long-term monitoring program	

Table 7 Monitoring Well Status Update May 2021

Post Closure Groundwater and Surface Water Monitoring Report Spring 2021 Yankee Nuclear Power Station Rowe, Massachusetts

Well ID	Well Diameter	Well Depth (feet)	Protection	Is Well Located in BUD?	Is Well Located in BUDFA?	Surrounding Area	Well Status as of May 2021
MW-107D	2 inch	81.2	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2016
MW-107E	2 inch	60	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2016
MW-107F	2 inch	57	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-108A	2 inch	25	Standpipe	Yes	No	Topsoil, grass seed	Decommissioning activities completed in 2010
MW-108B	2.25 inch	215	Standpipe	Yes	No	Topsoil, grass seed	Decommissioning activities completed in 2010
MW-108C	2 inch	170	Standpipe	Yes	No	Topsoil, grass seed	Decommissioning activities completed in 2010
MW-109A	2 inch	20	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2010
MW-109B	2.25 inch	190	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2010
MW-109C	2 inch	55	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2010
MW-109D	2 inch	113	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2010
MW-110A	2 inch	30	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-110B	2 inch	110	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-110C	2 inch	51	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-110D	2 inch	88	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-111A	2 inch	23	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-111B	2 inch	80	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-111C	2 inch	37	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-112A	2 inch	26	Standpipe	Yes	Yes	Topsoil, grass seed	Monitoring well grouted to the surface in 2012
MW-113A	2 inch	25	Road box	No	No	Topsoil, grass seed	Decommissioning activities completed in 2010
MW-113C	2 inch	90	Road box	No	No	Topsoil, grass seed	Decommissioning activities completed in 2010

Notes:

BUD = Beneficial Use Determination

BUDFA = Beneficial Use Determination Fill Area

Created by MV 7/10/12 Updated and Checked by CRS 06/28/21

APPENDIX A

MassDEP LETTER TO YNPS DATED FEBRUARY 23, 2016, "ROWE – DSWM-16-253-009 MassDEP – APPROVAL MINOR MODIFICATION PERMIT POST-CLOSURE ENVIRONMENTAL MONITORING 310 CMR 19.000"

Commonwealth of Massachusetts Executive Office of Energy & Environmental Affairs

Department of Environmental Protection

One Winter Street Boston, MA 02108 • 617-292-5500

RE:

Charles D. Baker Governor

Karyn E. Polito Lieutenant Governor Matthew A. Beaton Secretary

> Martin Suuberg Commissioner

Yankee Atomic Electric Company 49 Yankee Rd Rowe, MA 01367 Attention: Brian Smith, ISFSI Manager

FEB 23 2016

Rowe-DSWM-16-253-009 MassDEP - **Approval** Minor Modification Permit Post-Closure Environmental Monitoring 310 CMR 19.000 Yankee Nuclear Power Station 49 Yankee Road

Dear Mr. Smith:

On January 13, 2016, the Massachusetts Department of Environmental Protection (MassDEP) received the Minor Modification Permit application (the application), entitled "Proposed 2015 Revisions to the Groundwater and Surface Water Monitoring Program", for the former Yankee Nuclear Power Station (YNPS) in Rowe, MA. The application was prepared by Ransom Consulting, Inc. (Ransom) on behalf of Yankee Atomic Electric Company (Yankee), the owner of the YNPS. The application proposes to amend the June 19, 2007 MassDEP approval of the Final Post-Closure Groundwater Monitoring Plan (the Groundwater Monitoring Plan) for the YNPS, which addressed environmental monitoring at the Beneficial Use Determination (BUD) Fill Area (the former industrial area) and the Southeast Construction Fill Area (SCFA), in accordance with MassDEP's Solid Waste Regulations at 310 CMR 19.000.

In accordance with 310 CMR 19.142, the June 19, 2007 Groundwater Monitoring Plan approval required ongoing groundwater monitoring during the 30-year post-closure maintenance and monitoring period (which ends on June 19, 2037) at groundwater monitoring wells MW-104A, MW-105B, MW-106A, MW-107C, and Sherman Spring (SP-1) in the BUD Fill Area, and also at monitoring wells CFW-1, CFW-5, and CFW-6 in the SCFA. On December 6, 2011, MassDEP issued correspondence to Yankee, which approved the decommissioning of numerous additional groundwater monitoring wells at the YNPS, but which required Yankee to retain, maintain and preserve monitoring wells MW-102A, MW-102B, MW-102C, MW-105A, MW-105C, MW-107B, MW-107D, and MW-107E throughout the 30-year post-closure maintenance and monitoring period.

Proposed Modifications

The application proposes the following modifications to the June 19, 2007 Groundwater Monitoring Plan

This information is available in alternate format. Call Michelle Waters-Ekanem, Diversity Director, at 617-292-5751. TTY# MassRelay Service 1-800-439-2370 MassDEP Website: www.mass.gov/dep

Printed on Recycled Paper

Yankee Nuclear Power Station - Rowe Monitoring Modification Permit Approval

approval:

- 1. Discontinue all groundwater monitoring in the BUD Fill Area, except continue monitoring for tritium only, in monitoring well MW-107C and Sherman Spring, every five years.
- Abandon and properly decommission all remaining groundwater monitoring wells in the BUD Fill Area, i.e. MW-102A, MW-102B, MW-102C, MW-105A, MW-105C, MW-107B, MW-107D, and MW-107E. Decommissioning will include grouting the full depth of each well, in accordance with MassDEP's "Standard References for Monitoring Wells, Policy #WSC-310-91, dated April, 1991" (Standard References).
- 3. Discontinuc surface water sampling at the Deerfield River (upstream/SW-408, and downstream/Monroe Dam), Sherman Reservoir (SW-011), and locations SW-2 and SW-3 on Wheeler Brook.
- 4. Continue monitoring at the SCFA of groundwater monitoring wells CFW-1, CFW-5, & CFW-6 and surface water locations SW-1, SW-4, & SW-5 in Wheeler Brook every five years, but reduce monitoring parameters to: dissolved oxygen, oxidation/reduction potential, specific conductance, temperature and turbidity (as field parameters); and alkalinity, calcium, iron, manganese, and chemical oxygen demand (as laboratory parameters).

Ransom states that the proposed reductions in environmental monitoring are justified based on monitoring results to date. Ransom states that the next monitoring event is scheduled for 2019, however MassDEP notes that the actual scheduled monitoring events, according to the Groundwater Monitoring Plan, are 2016, 2021, 2026, 2031, and 2036.

MassDEP Determinations

MassDEP has reviewed the Minor Modification permit application in accordance with MGL c. 111 s. 150A, MGL c. 30A, the Massachusetts Solid Waste Regulations 310 CMR 19.000, the MassDEP's publication Landfill Technical Guidance Manual (the LAC), revised in May, 1997, and the MassDEP's publication Standard References for Monitoring Wells (WSC-310-91). MassDEP approves the Minor Modification permit application in accordance with the regulations at 310 CMR 19.000, subject to the following conditions and requirements.

- 1. Yankee shall perform environmental monitoring at the YNPS site in accordance with this Modification Permit approval during 2016, 2021, 2026, 2031, and 2036. MassDEP may, in writing, extend or shorten the 30-year post-closure monitoring period, or modify the post-closure monitoring requirements, if deemed appropriate based on protection of public health, safety, and the environment.
- 2. Except as modified by the conditions of this approval, Yankee shall also comply with the requirements of: MassDEP's Corrective Action Design (CAD) and Closure Certification permit approvals for the SCFA; MassDEP's June 19, 2007 Revised Beneficial Use Determination (BUD) for Structures permit approval; and the MassDEP's review of the Final BWSC Phase II Assessment for the YNPS site, including the Final Risk Assessment.
- 3. All environmental monitoring shall be performed by a qualified, independent consultant experienced in the solid waste field, in accordance with 310 CMR 19.132 and MassDEP's publication Standard References for Monitoring Wells (WSC-310-91).

4. Groundwater monitoring wells shall be sampled in accordance with the procedures outlined in the MassDEP's publication <u>Standard References for Monitoring Wells</u> (WSC-310-91). Sampling can alternatively be performed in accordance with the USEPA publication <u>Low</u> Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells, dated July 30, 1996.

- 5. Quality Assurance/Quality Control Plan (QA/QC) protocols for all environmental monitoring should generally follow those outlined in the MassDEP's LAC Manual and Standard References manuals.
- 6. Groundwater monitoring wells MW-105B, MW-107C, CFW-1, CFW-5, & CFW-6, and surface water locations SW-1, SW-4, SW-5 and Sherman Spring shall be sampled <u>during 2016, 2021, 2026, 2031, and 2036</u>. Monitoring wells MW-105B, MW-107C, CFW-1, CFW-5, & CFW-6 shall be protected from damage, and shall be visually inspected and equipped with a new lock during each monitoring event.
- 7. Groundwater samples from monitoring wells MW-105B and MW-107C shall be analyzed for tritium, as a Hard-to-Detect (HTD) radionuclide.
- 8. Groundwater samples from monitoring wells CFW-1, CFW-5, and CFW-6 shall be analyzed for dissolved oxygen, oxidation/reduction potential, specific conductance, temperature and turbidity (as field parameters); and alkalinity, calcium, iron, manganese, and chemical oxygen demand (as laboratory parameters).
- 9. Surface water samples from Sherman Spring shall be analyzed for Dissolved RCRA 8 metals, volatile organic compounds (VOCs) by EPA Method 8260, radionuclides by gamma spectroscopy, and also for the HTD radionuclides tritium and Sr-90. Radiological analyses by gamma spectroscopy shall at a minimum quantify the radionuclides Ag-108m, Cs-134, Cs-137, Co-60, Eu-152, Eu-154, Eu-155, Nb-94, and Sb-125. In addition, any other plant-related radionuclides detected by gamma spectroscopy above MDAs shall be reported as part of these analyses.
- 10. Surface water samples from surface water locations SW-1, SW-4, and SW-5 shall be analyzed for: dissolved oxygen, oxidation/reduction potential, specific conductance, temperature and turbidity (as field parameters); and Dissolved RCRA 8 metals, VOCs by EPA Method 8260, alkalinity, calcium, iron, manganese, and chemical oxygen demand (as laboratory parameters).
- 11. All VOC analyses by EPA Method 8260 shall be performed as outlined in 310 CMR 19.132(h)(1-3), specifically methyl ethyl ketone, methyl isobutyl ketone, acetone, and 1,4-dioxane shall be included, and unknown peaks having intensities greater than 5 times the background intensity shall be identified (Tentatively Identified Compounds, or TICs). As outlined at 310 CMR 19.132(i), detection limits for all parameters tested in groundwater samples shall be at or below the Massachusetts Drinking Water Standards & Guidelines (Maximum Contaminant Levels, or MCLs), including the 1,4-dioxane MCL of 0.3 micrograms/liter (ug/l).
- 12. Yankee shall submit the results of all groundwater monitoring data to MassDEP within 45 days of the date of sampling.
- 13. Yankee shall ensure that certified, third-party operations & maintenance (O&M) inspections of the BUD Fill Area and SCFA are completed once every two years, in accordance with 310 CMR 19.018, and that third-party inspection reports are submitted to MassDEP within 30 days of the date of the inspection.

- 14. MassDEP reserves the right to modify this approval at any time, based on its review of the results of monitoring data, or should MassDEP otherwise determine that additional environmental monitoring is required to protect public health, safety or the environment.
- 15. MassDEP and its agents and employees shall have the right to enter upon the YNPS site at reasonable times and with reasonable notice, to inspect the groundwater monitoring network, and to otherwise monitor compliance with this Approval and other MassDEP environmental laws and regulations.

Pursuant to 310 CMR 19.033(5), any person aggrieved by the issuance of this approval, except as provided for under 310 CMR 19.033(4)(b), may file an appeal for judicial review of said decision in accordance with the provisions of M.G.L. c. 111, s. 150A and C. 30A not later than thirty [30] days following the date of issuance of this decision. The standing of a person to file an appeal and the procedures for filing such appeal shall be governed by the provisions of M.G.L. c. 30 A. Unless the person requesting an appeal requests and is granted a stay of the terms and conditions of the permit by a court of competent jurisdiction, the final permit decision shall be effective in accordance with 310 CMR 19.033(3).

Any aggrieved person intending to appeal the decision to the superior court shall first provide notice to the MassDEP of said intention to commence such action. Said Notice of Intention shall include the MassDEP File Number (16-253-009) and shall identify with particularity the issues and reason(s) why it is believed the approval decision was not proper. Such notice shall be provided to the Office of General Counsel of the MassDEP and the Regional Director for the regional office which made the decision, at least five days prior to the filing of an appeal. The appropriate addresses to which to send such notices are:

General Counsel MassDEP of Environmental Protection One Winter Street-Third floor Boston, MA 02108

&

Regional Director MassDEP of Environmental Protection 436 Dwight Street - 5th Floor Springfield, MA 01103

No allegation shall be made in any judicial appeal of this decision unless the matter complained of was raised at the appropriate point in the administrative review procedures established in 310 CMR 19.000, provided that a matter may be raised upon a showing that it is material and that it was not reasonably possible with due diligence to have been raised during such procedures or that matter sought to be raised is of critical importance to the public health or environmental impact of the permitted activity.

The MassDEP reserves the right to require additional investigatory or remedial work at the YNPS site, including alternative remedial measures, if continued monitoring results indicate such a need. This approval pertains only to the solid waste management aspects of the proposal and does not negate the responsibilities of the owners or operators to comply with any other local, state or federal laws and regulations now or in the future.

If you have any questions concerning this matter, please contact the undersigned of this office, at #413-755-2280, or Larry Hanson of this office, at #413-755-2287.

Sincerely,

Daniel Hall Section Chief Solid Waste Management

DH/LGH/lgh Word:yankeemonmod216 Certified Mail, #7011 0470 0001 8408 0225 cc: Rowe Board of Selectmen Rowe Board of Health MA DPH – Radiation Control Program – Michael Whalen USEPA, Region 1 NRC DEP/WERO – Michael Gorski, David Howland, Eva Tor Franklin Regional Council of Governments

Citizens Awareness Network – Deborah Katz

APPENDIX B

FIELD DATA RECORDS - MAY 2021
		FIE	LD INST	RUME	NTAT	ION	CALIBRA	TION RECO	RD	
PROJECT NAME: PROJECT & TASK NU PROJECT LOCATION WEATHER CONDITION WEATHER CONDITION	JMBER: I (City/State): DNS (AM): DNS (PM):	.5	41 750	Yankee I 3616200 MAS	Rowe 6117 S A 60 * 4	£		DATE: $5/19/21$ SAMPLER: $55/14$ AM CAL. CHECK TIME: 0542 PM CAL. CHECK TIME: $1-7/5$ CHECKED BY: $0C$ DATE $5/2/120-2$		
MULTI-PARAME METER TYPE MODEL NO. UNIT ID NO.	Conductivity pH 7 pH 4 Redox 0 (Saturated)	QUALITY Units mS/cm SU SU +/- mV %	METER Start Time Standard Value 1.413 7.0 4.0 240 100	AM CA Me Va Ly11 T.C Ly12 Jy2 Va	LIBRATIO End Tir eter lue	2 <u>N</u> me 1.371 6.9 - 3.9 - 230 - 90 - 1	<u>) </u>	Start Time Standard Value 1.413 7.0 4.0 240 100	$\frac{PMCALIBRATIK}{15}$ End T Meter Value $\frac{1.416}{7.02}$	DN ime 1 7 : 40 *Acceptance Criteria (PM) 1.342 - 1.484 mS/cm 6.70 - 7.30 pH Units (Not Required) *230 - 250 mV *200 - 110 %
DC 1	DO (Zero) (Saturated) Femperature Baro. Press.	% mg/L °C mmHg	0.0 (1) <u>9.0</u> None None	4.5	19 62 7.6	0.0 - +/- 0.: None None	1.0 % 2 mg/L	0.0 (1) 2 7 None None	8 71 26.78 740-3	(Not Required) +/- 0.5 mg/L None None
TURBIDITY METI METER TYPE MODEL NO. UNIT ID NO.	ER Hach 2100Q M024- 47	. 1 2 10 80	0 Standard 0 Standard 0 Standard 0 Standard	Units NTU NTU NTU NTU	Stand Valu 10 20 100 800	lard Je)))	Meter Value (0.9 (9.8 94.3 79.2	Standard Value 10 20 100 800	Meter Value 8.92 17.4 98.9 78.3	*Acceptance Criteria (PM) 9.5 - 10.5 NTU 19.0 - 21.0 NTU 95.0 - 105 NTU 760 - 840 NTU
PHOTOIONIZATIO METER TYPE MODEL NO. UNIT ID NO.	ON DETECTO	R	ackground Span Gas	Units ppmv ppmv	Stand Valu <0.1 100	lard Je 1)	Meter Value NA	Standard Value <0.1 100	Meter Value	0.0 - 5.1 ppmv 90 - 110 ppmv
O2-LEL 4 GAS ME METER TYPE MODEL NO. UNIT ID NO.	ETER NA		Methane O ₂ H ₂ S CO	Units % % ppmv ppmv	Stand Valu 50 20.9 25 50	ard ie 9	Meter Value NA	Standard Value 50 20.9 25 50	Meter Value	45.0 - 55.0 % 18.8 - 23.0 % 22.5 - 27.5 % 45.0 - 55.0 %
OTHER METER METER TYPE MODEL NO. UNIT ID NO.				Units	Standa Valu	ard Ie	Meter Value	Standard Value	Meter Value	See Notes Below for Additional Information
Equipme Equipme	ent calibrated wit ent (not) calibrate	thin the A ed within	cceptance Crit the Acceptanc	eria speci e Criteria	fied for ea	ach of t for eac	he parameters lis	ted above. ers listed above**.		
VATERIALS RECORD Cal. Standard Lot Number Exp. Date Deionized Water Source: -NA- -NA- Deionized Water Source: 10/2.1 .ot#/Date Produced: -NA- pH 7.0 D (5.26.8) 10/2.1 .irip Blank Source: Iab D (6.3.90.4) 10/2.2 Disposable Filter Type: -NA- 10 NTU 10.96.3.90.4 Disposable Filter Type: -NA- 10 NTU 10.96.3.90.4 Calibration Standards Source: FOS 20 NTU 40.6.9.9 00 NTU 40.06.9 6/2.2 00 Her na na										
NOTES: AM	DO (mg/1 PO (mg/1 10,20) not Turb.	tin range notin	je raye		s. R	ampler sign	ature: be W	ood	1090 Elm Street 2nd Floor, Suite 201 Rocky Hill, CT. 06067 (860)529-7191
 (1) Value from "Saturated * = Unless otherwise note Purging and Sampling (EC ** = If meter reading is not document any deviations 	dissolved oxygen in d, calibration proced QASOP-GW001), ea t within acceptance of from acceptance crit	water at va lures and ac ach dated 1/ criteria, clea teria on all c	arious temperature cceptance criteria 19/2010. Additona In/replace probe a lata sheets and log	es" chart. are in genera al acceptance nd re-calibra g book entrie	al accordance criteria obi ite, or use ca as.	ce with L tained fro alibrated	JSEPA Region 1 SOP om instrument specific back-up meter if avai	Ps for Field Instrument C c manufacturer recomm ilable. If project requirer	alibration (EQASOP-Fi endations. ments necessitate use o	eldCalibrat) and Low Stress of the instrument, clearly

ES-4

Rev. 1

WATER QUALITY MONITOR CALIBRATION FORM (SAMPLE)

Make/Model: TSI 556 MPS

Serial	Date	Time	Temperature	Standard	Daga	Fail	Initiala	
	Date	1 mile	Temperature	Statituaru	rass	гап	initials	COMMENTS
#								
Mo15-11	5/19/25	0906	18.53				55M	
ſ	1			1,413				
				7.0	~			
				20	\checkmark			
				240	~			
				100	\checkmark			
		V	V	0.0	\checkmark			
Ý	Ť			9.0	~	V		
				10, gio	V			
	K N/			191830	V			
('		V	N	99.300	V			
				800	\checkmark			

				DIME	NTATIO				
PROJECT NAME:		E STATU		Yankee	Rowe	N CALIBRA	TION RECO	RD	
PROJECT & TASK	KNUMBER:			361620	6117		DATE:	5/19	121
PROJECT LOCAT	ION (City/State):			MAS	S		AMCAL CHEC		47
WEATHER COND	ITIONS (AM):		SUD 7	SOF	0		AM CAL, CHEC		12
WEATHER COND	ITIONS (PM):		Sun pl	Jor -			CHECKED BY		. 00 DATE 6/2 /2 -
							T	5571	DATE JAMAO
METER TYPE MODEL NO.	YSI 556 MPS	QUALI ⁻ - -	TY METER Start Time 0	84 <u>3</u>	LIBRATION End Time	0915	Start Time 17	ION Time 17 30	
UNITID NO.	M015-0 9	Units	Standard Value	Me	ter	*Acceptance	Standard	Meter Value	*Acceptance
	Conductivity	mS/cm	1.413	1.4	13 13	371 - 1 455 mS/cm	Value	14(7	Criteria (PM)
	pH 7	SU	7.0	7.0	0 6.9	9 - 7.1 pH Units	7.0	7:0	1.342 - 1.484 mS/cm
	pH 4 Rodov	SU +(m)(4.0	4.0	0 3.9	9 - 4.1 pH Units	4.0	110	(Not Required)
1	DO (Saturated)	•/- mv	240	240	23	0 - 250 mV	240	225.0	230 - 250 mV
	DO (Zero)	%	0.0	41.	90	- 110 %	100	120.8	90 - 110 %
	DO (Saturated)	mg/L	(1) 9_0	9.6	5 +/-	0.2 mg/L	(1) 7.7	01.71	(Not Required)
	Temperature	°C	None	10/0	67 No	ne	None	26.81	+/- 0.5 mg/L None
	Baro. Press.	mmHg	None	740.	<u>.</u> No	ne	None	770.6	None
TURBIDITY ME	ETER			Units	Standard	Meter	Standard	Motor	*Acceptance
MODEL NO.	2100Q				Value	Value	Value	weter value	Criteria (PM)
UNIT ID NO.	M024-20		10 Standard 20 Standard	NTU NTU	10 20	7.5	10	10.1	9.5 - 10.5 NTU
		1	00 Standard	NTU	100	102	100	103	19.0 - 21.0 NTU
	10.000 - 10.000 - 10.000 - 10.000 - 10.000	8	00 Standard	NTU	800	794	800	\$10	760 - 840 NTU
PHOTOIONIZA METER TYPE MODEL NO.		R		Units	Standard Value	Meter Value	Standard Value	Meter Value	
UNIT ID NO.			Background	ppmv /	<0.1	NA	<0.1		0.0 - 5.1 ppmy
			Span Gas	ppmv	100		100		90 - 110 ppmv
O2-LEL 4 GAS I	METER			Units	Standard	Meter	Standard	Meter Value	
METER TYPE	NA		Methane	0/6	Value 50	Value	Value		
MODEL NO.			O ₂	%	20.9		20.9	· · · · · · · · · · · · · · · · · · ·	45.0 - 55.0 %
UNIT ID NO.			H ₂ S	ppmv	25		25		18.8 - 23.0 %
			СО	ppmv	50		50	The second second	45.0 - 55.0 %
OTHER METER	1			Units	Standard	Meter	Standard	Meter Value	
METER TYPE				Same.	Value	Value	Value		See Notes Below for
UNIT ID NO.		-	<u> </u>						Information
Equipr	ment calibrated wit	hin the 4		oria specifi					
Equipr	ment (not) calibrate	ed within	the Acceptance	e Criteria s	pecified for e	ach of the parameters list	ed above. rs listed above**.		
MATERIALS RE	CORD						Cal. Standard Lot N	umber	Exp. Date
						Conductivity	6-5462		10/21
Deionized Water So	ource:		-NA-			pH 7.0 00	55268		10/0
Lot#/Date Produced	d:		-NA-			pH 4.0 🐧	65904		10/22
Sample Preservativ	es Source:		lab			Redox	063306		7/21
Disposable Filter T	ype:		-NA-			DO (Zero)	Ain 1		ten -
Calibration Standar	rds Source:		FOS			20 NTU	A1013		4/22
	1254 mar 117					100 NTU	A1020		
						800 NTU	A1020		5/27
						Cal Gas Other	na		na
NOTES PM	ORP notin	range	,	-					IId
An DO	hall no	+ in	Id And			SAMPLER SIGNA	TURE:		1090 Elm Street
Q Q Q	ingia no		There			PS-	W	bod	2nd Floor, Suite 201
rm 110%	notin ro	angl	, Po mg/c	. noti	Nango	0	**		(860)529-7191
 value from "Saturate Unless otherwise no 	ed dissolved oxygen in voted, calibration procedu	water at va ires and a	rious temperatures	" chart. re in general	accordance with	LISEPA Paging 1 200	for Field lead		
<pre>'urging and Sampling (I * = If meter reading is a</pre>	EQASOP-GW001), eac	h dated 1/	19/2010. Additonal	acceptance o	criteria obtained	from instrument specific r	manufacturer recommen	pration (EQASOP-Fie dations.	IdCalibrat) and Low Stress
ocument any deviation	is from acceptance crite	ria on all c	lata sheets and log	o re-calibrate, book entries.	or use calibrate	d back-up meter if availa	ble. If project requireme	nts necessitate use o	f the instrument, clearly
			-3			- No			

WATER QUALITY MONITOR CALIBRATION FORM (SAMPLE)Make/Model:4SJ556MesMo(s-aq)

Serial	Date	Time	Temperature	Standard	Page	Fail	Initiala	
#			romportatione	Standard	1 455	1'411	minais	COMMENTS
11	-1 1							
NA	5/19/21	0843	19-67	1.413, S/CH	X		PSI	
				7-0 pH	X			
				4-0 pH	X			
				240.0m	×			
				100 90	×			
				9.0 mgl		X	+	9.65
				10 NTH	X			
				20 NTY	X			
				100 NTU	X			
	L	+	E	800 NTV	×		+	
	23 							

	FIELD INSTRUMENTATION CA	LIBRATION RECORD	
PROJECT NAME:	Yankee Rowe	DATE: 5/20/2/	
PROJECT & TASK NUMBER:	3616206117	SAMPLER: DLL	
PROJECT LOCATION (City/State):	MASS	AM CAL. CHECK TIME: 0730	
WEATHER CONDITIONS (AM):	SUN 650F.	PM CAL. CHECK TIME: 11-30	
WEATHER CONDITIONS (PM):	SUN 800 K	CHECKED BY: 35M DATE 5/2/24	

									Contraction in the second s	NAME OF TAXABLE PARTY AND A DESCRIPTION OF TAXABLE PARTY.
MULTI-PARA	METER WATER	QUALIT	Y METER							
METER TYPE MODEL NO. UNIT ID NO.	YSI 556 MPS M015- 20	- T	Start Time 🚺	7 <u>30</u>	LIBRATIO End Tin	<u>ne</u> 0810		Start Time 11-3	PM CALIBRATI	<u>ON</u> ime <u>1150</u>
		⊢ Units	Standard Value	Me Va	eter Ilue	*Acceptance Criteria (AM)		Standard Value	Meter Value	*Acceptance Criteria (PM)
	Conductivity pH 7 pH 4 Redox DO (Saturated) DO (Zero) DO (Saturated) Temperature Baro. Press.	mS/cm SU SU +/- mV % mg/L °C mmHg	1.413 7.0 4.0 240 100 (1) 8 None None	1.41 7.0 41. 2.4 8.4 7.4 7.4 7.4	13 0.0 .0 .0 .0 .0 .0	1.371 - 1.455 mS/cn 6.9 - 7.1 pH Units 3.9 - 4.1 pH Units 230 - 250 mV 90 - 110 % 0.0 - 1.0 % +/- 0.2 mg/L None None	m	1.413 7.0 4.0 240 100 0.0. (1)	1.405 7.02 97.8 97.8 7.94 18-44 18-44 7-5-1	1.342 - 1.484 mS/cm 6.70 - 7.30 pH Units (Not Required) 230 - 250 mV 90 - 110 % (Not Required) +/- 0.5 mg/L None None
TURBIDITY N METER TYPE	Hach	-		Units	Standa Valu	e Value		Standard Value	Meter Value	*Acceptance Criteria (PM)
UNIT ID NO.	M024-6(2	1	10 Standard 20 Standard 00 Standard 00 Standard	NTU NTU NTU NTU	10 20 100 800	9.88 19.0 102 802		10 20 100 800	11.2 25-1 110 832	9.5 - 10.5 NTU 19.0 - 21.0 NTU 95.0 - 105 NTU 760 - 840 NTU
PHOTOIONIZ METER TYPE MODEL NO		DR		Units	Standa Value	erd Meter Value		Standard Value	Meter Value	
UNIT ID NO.		:	Background Span Gas	ppmv ppmv	<0.1 100	NA		<0.1 100		0.0 - 5.1 ppmv 90 - 110 ppmv
O ₂ -LEL 4 GAS	S METER			Units	Standa Value	rd Meter e Value		Standard Value	Meter Value	
METER TYPE MODEL NO. UNIT ID NO.	NA	-	Methane O ₂ H ₂ S	% % ppmv	50 20.9 25	NA		50 20.9 25		45.0 - 55.0 % 18.8 - 23.0 % 22.5 - 27.5 %
			со	ppmv	50			50	<u></u>	45.0 - 55.0 %
OTHER METE METER TYPE MODEL NO.	ER	- -		Units	Standa Value	rd Meter Value		Standard Value	Meter Value	See Notes Below for Additional Information
		in an			-	and the second				
Equ	ipment calibrated w ipment (not) calibra	ithin the ted withir	Acceptance Cri	teria specii e Criteria :	fied for ea specified f	ch of the parameters or each of the param	s listed neters	above. listed above**.		
MATERIALS F	RECORD						Ca	al Standard Lot N	umber	Exp. Data
						Carduation	06	7968	4.1.001	10/3/
Deionized Water	Source:		-NA-			pH 7.0	06	5268		10/22
			-11/1-		Alter and a second s	pH 4.0	00-	9904		[[]]]]]]

Trip Blank Source:
Sample Preservatives Source:
Disposable Filter Type:
Calibration Standards Source:

-NA-	
-NA-	
lab	
lab	
-NA-	
FOS	

Conductivity	067968	10/2
pH 7.0	065268	101
pH 4.0	06-5904	1013
Redox	06-3306	17
DO (Zero)	1	
10 NTU	ALOAG	71.
20 NTU	A 1064	61
100 NTU	A1069	61
800 NTU	A 10 82	61
Cal Gas.	na	
Other	na	

NOTES: AM Do mall not in range Pm Turb 10,20,00 not in range

SAMPLER SIGNATURE:

1090 Elm Street 2nd Floor, Suite 201 Rocky Hill, CT. 06067 (860)529-7191

22

na na

(1) Value from "Saturated dissolved oxygen in water at various temperatures" chart.

(1) Value inside observed subjects any general and comparison of the instrument of the instrument, clearly document any deviations from acceptance criteria on all data sheets and log book entries.

ES-4

Rev. 1

WATER QUALITY MONITOR CALIBRATION FORM (SAMPLE) VST 556 MPS TUB Hack 2100 Q

Make/Model: 157 556 MPS

Serial	Date	Time	Temperature	Standard	Pass	Fail	Initials	COMMENTS
#								
	5/20/21	0730	20.67	Temp C			PS	
		1		1.413 ms/cm	X		i	
				7.0 pH	X			
				4.0pH	X			
				240.0 mu	X			
				100%	X	-		
				8. amg/c		X		
				10	X			
				20	X			
				(00	×			
	4	1		200	×			
			-					

GROUND WATER S	SAMPLING FIELD LOG (SAMPLE)							
	<u>Form 1</u>							
Sample Location Sherman Spring	Well Designation Sherman Spring (SP-1)							
Sampling Team OL KA JM Sample Period 5/20/21								
Date $5/20/2$	Time 0850 stall 0825 sample time							
	Depth to Mid Screen(ft)							
Measuring Point	Diameter of Well(in)							
Well Depth (from measuring point) (D)	(ft)							
Depth to water (DTW)	(ft)							
Length of Water Column (LWC)	(ft) (LWC=D-DTW)							
Volume of Water in Well (VW)	gal Conversion							
	Factor							
Volume of Purge (VTP) (VTP = VW x 3	(gal)							
At Time of Measurements.								
Color CLERC	Odor plat							
Total volume purged								
NA	_ Duration of purging							
Purging method	Did well go dry?							
Weather conditions $500 650F$								
10 ⁻¹ /10								
Pump Serial Number 5008-41 900	1 Octor P							

Pump Serial Number 5000-41 900 pump
Water Quality Monitor Serial Number 154 Mo15-09 Turb Mo24-42
Analyses Requested VOC, 1,40 & CRA & metals, Radionuclides, Strontium-90
Tritium
Previous Final Readings: pH Cond Turb DO Temp ORP DTW Flow
NO previous readings

				Fo	<u>rm 2</u>			
Sample F	Round She	(may 9)	Pring (SP	'-D				
	5/20/21	/		Current	Readings			
Time	pН	Cond	Turb (NTU)	D.0	Temp (°C)	ORP	DTW	Comments
(inin)		mS/cm		(mg/L)		(mv)	(feet)	
0	+/- 0.1	+/- 3%	+/- 10%	+/-10%	+/- 1 E	+/-10 mv		
5		10 22/	I 2L	10.19	11 .714	2012	10	
10	0-03	0.236	1.57	0.12	11-101	201.2	NA	
10	1							
20	<u> </u>			-				
25								
30								
35	-							/
40								
45							/	
50						/		
55								
60						/		
65					/			
70					10)		
75					1501			
80					C			
85				/				
90								
95				./				
100				/				
105								
110								
115								
120		/						
125								
130								
135		/						
140	/							
145								
150								
155								

WATER QUALITY PARAMETERS (SAMPLE)

ES-4 <u>Rev. 1</u>

Г

GROUND WATER S	SAMPLING FIELD LOG (SAMPLE)	
	Form 1	
Sample Location <u>SW-</u>	Well Designation Sw-	
Sampling Team OL RA 5M	Sample Period $\frac{5/20}{2}$	
Date $5/20/21$	Time 1010 sample time	
	Depth to Mid Screen	(ft)
Measuring Point	Diameter of Well	(in)
Well Depth (from measuring point) (D)		(ft)
Depth to water (DTW)		(ft)
Length of Water Column (LWC)	(ft) (LW	C=D-DTW)
Volume of Water in Well (VW)	gal	Conversion
		Factor
Volume of Purge (VTP) (VTP = VW x 3)(gal)	
G		· · · · · · · · · · · · · · · · · · ·
At Time of Measurements:	2	
Color Clear	Odor none	
Total volume purged	Duration of purging	A
Purging method MA	_ Did well go dry?	4
Weather conditions Sun 65°F		

Design in Sood id analysis
Pump Serial Number 2008 - 11 940 pump
Water Quality Monitor Serial Number 157 MOIS 09 Turb Mozy-42
Analyses Requested NOC, 1,40 Ca Fe May RCRA 8 metals Alkalinity COD
Previous Final Readings: pH7. Cond 0.028 Turb 0.87 DO 14.3 Temp 283 ORP 207 DTW - Flow -

Previous Final Readings: pH7. Cond<u>0.02</u> Turb<u>0.87</u> DO<u>14.3</u> Temp<u>283</u> ORP<u>207</u>DTW – Flow – (3/24/16)

WATER QUALITY PARAMETERS (SAMPLE)

Form 2

Sample F	Round SW	». <u> </u>							
5/20/2 Current Readings									
Time (min)	рН	Cond mS/cm	Turb (NTU)	D.O (mg/L)	Temp (°C)	ORP (mv)	DTW (feet)	Comments	
0	+/- 0.1 std. unit	+/- 3%	+/- 10% NA <10NTU	+/-10%	+/- 1 E	+/-10 mv			
5	4-73	0.023	1.54	10-50	9.79	212.3	0-15		
10			_						
15									
20									
25									
30								/	
35									
40									
45						/			
50									
55						/			
60					/				
65					4	\mathbf{D}			
70					Ad 1				
75					SD/				
80									
85				1					
90			2	/					
95			/						
100									
105									
110			/						
115									
120									
125									
130									
135									
140									
145									
150	/		2						
155									

GROUND WATER S	SAMPLING FIELD LOG (SAMPLE) Form 1	
Sample Location <u>SW-4</u> Sampling Team <u>DL RA SM</u> Date <u>5 / SO / 21</u>	Well Designation SW-4 Sample Period 5/20/2/ Time 1035 Sample Find	
Measuring Point Well Depth (from measuring point) (D) Depth to water (DTW) Length of Water Column (LWC) Volume of Water in Well (VW) Volume of Purge (VTP) (VTP = VW x 3	Depth to Mid Screen Diameter of Well 	(ft) (ft) (ft) (ft) C=D-DTW) Conversion Factor
At Time of Measurements: Color	_ Odor_ <i>pone</i> Duration of purging Did well go dry? <i>M</i>)

Pump Serial Number 5008 -41 geopump
Water Quality Monitor Serial Number YST MOIS-09 Turb Mozy-42
Analyses Requested VOC, 140, LAFE Mn, RCRAS metals Alkalinity (0)
Previous Final Readings: pHb-13 Cond0026 Turb].6 DO13-80 Temp3.44 ORP144. DTW Flow

(3/24/16)

WATER QUALITY PARAMETERS (SAMPLE)

Form 2

Sample Round $5W - 45/20/21$								
Current Readings								
Time	pH	Cond	Turb (NTU)	D.0	Temp (°C)	ORP	DTW	Comments
(min)		mS/cm		(mg/L)		(mv)	(feet)	
0	+/- 0.1	+/- 3%	+/- 10%	+/-10%	+/- 1 E	+/-10 mv		
	std. unit	ຄຸດໂຫ	NA <10N1U	1.113	10 117	1.77.1	A 3	
5	4-99	0.030	3-15	11.45	10-93	113.4	0-1	
10								
15								
20								
25								/
30							/	
35								
40							/	
45						/	(
50								
55						/		
60						(
65	ļ					ļ		
70					10	h		
75					Re	V		
80					Y/			
85				Ke	2			
90								
95				/				
100								
105								
110								
115								
120								
125								
130								
135		/				2		
140								
145								
150								
155	/							10

GROUND WATER S	SAMPLI For	ING FIELD LOG (S. <u>m 1</u>	AMPLE)	
Sample Location $SW-5$ Sampling Team $IL AA 5M$ Date $5/20/21$	_ Well D _ Sample _ Time_	Designation <u>SW-5</u> e Period <u>S/20/21</u> 11:00 Scimple	timp	
Measuring Point Well Depth (from measuring point) (D) Depth to water (DTW) Length of Water Column (LWC) Volume of Water in Well (VW) Volume of Purge (VTP) (VTP = VW x 3	, MA 3)	Depth to Mid Screen	n (ft) (LW gal (gal)	(ft) (ft) (ft) /C=D-DTW) Conversion Factor
At Time of Measurements: Color_ <u>C(PAT</u> Total volume purged Purging method Weather conditions_SUN &F	 	Odor None Duration of purgin Did well go dry?	^{ig} ////	

Pump Serial Number <u>SOOS-41</u> <u>geopump</u> Water Quality Monitor Serial Number <u>YSI</u> <u>MOIS-09</u> <u>TUID</u> <u>MO24-42</u> Analyses Requested <u>VOC, 1,40</u> , (AFE MD, RCRS metals <u>AIKULINITY</u> (OD
Previous Final Readings: pH <u>S_99</u> Cond <u>0.00</u> Turb <u>0.82</u> DO <u>11_9</u> 8Temp <u>3_57</u> ORP <u>16</u> 5DTWFlow (3/24/16)

WATER QUALITY PARAMETERS (SAMPLE)

				Fo	<u>rm 2</u>				
Sample I	Round SU	v-5	5/20/2	/]
		_		Current	Readings		•		
Time	pH	Cond	Turb (NTU)	D.0	Temp (°C)	ORP	DTW	Comments	
(min)		mS/cm		(mg/L)		(mv)	(feet)		
0	+/- 0.1 std. unit	+/- 3%	+/- 10% NA <10NTU	+/-10%	+/- 1 E	+/-10 mv			
5	5-66	0.036	8.77	10.84	11.51	174.5	0.76	/	
10									-
15									
20							1.1		-
25									-
30								/	
35									-
40							/		
45									-
50								· · · · · · · · · · · · · · · · · · ·	-
55						/			
60					1	9			-
65					1d	\mathcal{I}			1
70					180	/			
75					10				-
80				/					-
85					****				-
90							-		-
95				/					-
100			/						
105									-
110				-					
115									
120									
125		/							
130									
135		/							
140	/								
145									
150									
155	/								
	1 / · · · ·				the second s			An experience and a second	1

GROUND WATER S	<u>AMPLING FIELD LOG (SAMPLE)</u> <u>Form 1</u>
Sample Location <u>CFW-</u> Sampling Team <u>DC_J</u> M Date <u>SAD 5/19/25</u>	Well Designation $\angle F W - 1$ Sample Period $\underline{Ma_7 2021}$ Time $\underline{(025 5/19/21 - 0950 5/20/21)}$
Measuring Point <u>TOR</u> Well Depth (from measuring point) (D) Depth to water (DTW) Length of Water Column (LWC) Volume of Water in Well (VW)	Depth to Mid Screen (ft) Diameter of Well $2^{\prime\prime}$ (in) $9^{\prime}-20$ (ft) $4^{\prime}-62$ (ft) $4^{\prime}-58$ (ft) (LWC=D-DTW) 0.773 gal Conversion
Volume of Purge (VTP) (VTP = VW x 3)	$\frac{2.19}{\text{(gal)}}$

At Time of Measurements: Color_ <u>19</u> brown Total volume purged_ <u>6.04</u> Purging method_ <u>brownp</u>	Odor <u>No odor</u> Duration of purging <u>UO</u> Did well go dry? <u>(RS</u>
Purging method $6cop \mu np$ Weather conditions 50.117 $70^{-5}80^{\circ}$	Did well go dry? <u>(the</u>

< -1008 - 41	ž.
Pump Serial Number (
Water Quality Monitor Serial Number <u>M200 -74(1P)</u> , MOIS -09(1S1), MO27-2	g(hob Mete
Analyses Requested Callum, Iron May Alhad, Arty COD	
Maganese	
Previous Final Readings: pH7-16 Condv024 Turb 546 DO 562 Temp3.78 ORP86-7 DTW8-8Flow15	ð
(3/24/16)	

d'

					For	<u>m 2</u>			
	Sample Round & May 19 19, 2021								
			1CFh	1-1	Current	Readings			
	Time (min)	рН	Cond mS/cm	Turb (NTU)	D.O (mg/L)	Temp (°C)	ORP (mv)	DTW (feet)	Comments
1050	0	+/- 0.1 std. unit	+/- 3%	+/- 10% NA <10NTU	+/-10%	+/- 1 E	+/-10 mv	4.62	Well ID Pore begin CFWI 1050
(100	5	4.18	0.026	89.1	2.78	9.50	122.5	4.95	11/2 milling in
1105	10	4.16	0.025	77.1	2.94	9.45	135.2	5.05	d.
1110	15	9.21	0.025	781	4.26	9.51	127.5	5.50	
1115	20	4.33	0.025	92.4	3.60	4,35	123.7	6,74	
(120	25	4.78	0.027	95.9	2.76	9.36	125.7	7.45	
1125	30	-	-	-	-	-	1	-	Missed reading
1130	35	7.32	0,025	401.0	2,78	471	132.4	8,26	
(13)	40	- ·-	1	1	-	~	~	-	1135 well dry
1140	45		-						returnede
	50								to grobs ample
	55	5/20/21	re fur	to we	1, take	grab so	mple D	TW 3-	37 (2) 0950
	60	a i ai	495				/		
	65					1116-			
	- 70								
	75								
-	80							/	
	85								
	90								
	95								
	100				P	χ			
	110				- 13	()			
	115				AS	/			
	120			/					
	125								
	130				1				
	135								
	140		/						
	145								
	150	/							
	155	/							
Ļ	-								

WATER QUALITY PARAMETERS (SAMPLE)

Page 13 of 39

*

I

$\frac{\text{GROUND WATER S}}{\text{Sample Location} (CFW-5)^{\text{B}} 044 \text{ MS} \text{ MSD}}$ $\frac{\text{Sampling Team} (\mathcal{X}, 3M)}{\text{Date} (19/2)}$	SAMPLING FIELD LOG (SAMPLE) Form 1 Well Designation CFW-5 Sample Period May 202 Time 10 %
Measuring Point <u>TUR</u> Well Depth (from measuring point) (D) Depth to water (DTW) Length of Water Column (LWC) Volume of Water in Well (VW) Volume of Purge (VTP) (VTP = VW x 3)	Depth to Mid Screen (ft) Diameter of Well \downarrow (in) $\cancel{4.75}$ $\cancel{8.63}$ (ft) $\cancel{4.75}$ (ft) 3.88 (ft) (LWC=D-DTW) 0.62 gal Conversion $\cancel{9.119}$ Factor $\cancel{9.4}$) $\cancel{2.55}$ $\cancel{1.86}$ (gal)

At Time of Measurements: Color_ <u>Clear</u> Odor_ <u>Doce</u> Total volume purged <u>2-55 ga1</u> Purging method <u>glo fump</u> Weather conditions <u>5UN</u> 75°F Odor_ <u>Doce</u> Duration of purging <u>70 mins</u> Did well go dry?_ <u>Doce</u>
--

5-006 111
Pump Serial Number
Water Quality Monitor Serial Number M200-74 MOIS-09 (YSL) MO27-29 (Turb)
Analyses Requested Ca Fe Mn, COD, Alkalinity
Previous Final Readings: pH7h Cond() & Turbh & D04 11 Temp5 22 OPP(7 DTWH (*Elow 14)
(3/24/16) (3/24/16)

Page 12 of 39

ES-4 <u>Rev. 1</u>

					For	<u>rm 2</u>	-		
	Sample R	tound Ma	-v 202	(CHW	-5	
			5/19	21	Current	Readings			
	Time (min)	pH	Cond	Turb (NTU)	D.0	Temp (°C)	ORP	DTW	Comments
019/21	(1111)		mS/cm		(mg/L)		(mv)	(feet)	
ED	1150	+/- 0.1 std. unit	+/- 3%	+/- 10% NA <10NTU	+/-10%	+/- 1 E	+/-10 mv	7.75	CFW-S
USSA	5	5.32	0.28	29.2	(109	00.00	92.7	4.98	140ml/min
(200	10	5.31	0.28	17.9	0,91	10.18	89.5	4.98	
1205	15	5.40	0.28	17-1	0,87	9.97	85,1	500	
1210	20	5.48	0.28	15.2	1,85	9.94	84.0	5.00	
1215	25	5.53	0.28	15,1	2.89	9,68	78.8	5,00	
12:00	30	5.59	0.28	10.9	2.30	10.02	81.0	5.00	
1392	35	5.61	0.28	17.0	201	9.81	720	5,00	
1230	40	5,64	0.28	127	1.45	9.78	79.6	5.00	
1235	45	5-65	0,28	120	1.16	9.58	79.5	5.00	
1290	50	5.66	0.28	4,75	6.38	9.85	78,3	5.00	
(29)	55	5.68	0-289	[[.]	1.38	10.07	74.2	5.00	
1000	60	5-71	0.241	8-84	1.03	9,95	72.2	5.00	
1255	65	5-72	0.201	9.21	1.08	9.90	70.3	5.00	
1300	70	5-14	0292	9-98	1.00	9.89	70.9	5.00	
1301	75	Collect	- Samp	es. well	stuble				
	80								
	85								
	90								
	95								
	100						/		
1	105					-)		
-	110					ASU	/		
	120					17V			
	120								
-	130								
-	135								
-	140			/					
	145								· · · · · · · · · · · · · · · · · · ·
-	150								
-	155								ate -
L		r -			Page 1	7 of 20			

WATER QUALITY PARAMETERS (SAMPLE)

ES-4

Rev. 1

GROUND WATER S	AMPLI For	<u>NG FIELD LO</u> <u>n 1</u>	<u>G (SAMPI</u>	LE)
Sample Location CPC-6 Sampling Team JM, DL Date B(JM9 (J)	_Well D _Sample Time	esignation C Period May [330	PV-6 21	
Measuring Point <u>TOR</u> Well Depth (from measuring point) (D) Depth to water (DTW) Length of Water Column (LWC) Volume of Water in Well (VW) Volume of Purge (VTP) (VTP = VW x 3))	Depth to Mid S Diamete 3.46 0.55 (.65)	Screen r of Well 5.2 (ft) (gal)	(ft) (in) (in) (in) (in) (ft) (ft) (LWC=D-DTW) Conversion Factor().U

At Time of Measurements:	
Color_CStor	Odor No oder
Total volume purged 1.001	Duration of purging 35 Mrs
Purging method brapump	Did well go dry?
Weather conditions Sunn 4 80	

Pump Serial Number S-008-11	
Water Quality Monitor Serial Number M200-74 MOIS-09 (451), MO27-270	Turk
Analyses Requested Cafe Mr, CoD, Alhabity	
Previous Final Readings: pH 1-88 Cond 0088 Turbl. 55 DO3-12 Temp 6-00 ORP 16-6 DTW5-76 Flow 150	3
(3/24/16)	<u> </u>

ES-4 <u>Rev. 1</u>

|

WATER QUALITY PARAMETERS (SAMPLE)

2	Louise
2	FORM
4	I ULIII

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	mments
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mments
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
400 25 4.82 0,08 1.89 4.67 4,99 1424 5.95	
1405 30 7.87 0,08 1,90 4.87 10,00 171.8 5.96	
1410 35 4.87 0.08 (.17 4.90 9.96 14.5 5.94	
1415 40	MU Stub. TIZE
45 Well Stubilized Symples Collected	
1725 50	
55	
60	
65	
70 *	
75	
80	
85	
90	
95	
100	
105	
110	
115	
120	
125	
130	
135	
140	
145	
150	
155	

1

ES-4 Rev. 1

<u>GROUND WATER S.</u>	AMPLING FIELD LOG (SAMPLE) Form 1
Sample Location \underline{MU} -10513 Sampling Team \underline{RENE} \underline{AUBE} Date $\underline{5/19/21}$	Well Designation $MW - 105B$ Sample Period $MAY 2021$ Time $1355 - 1650$
Measuring Point <u>TOR</u> Well Depth (from measuring point) (D) Depth to water (DTW) Length of Water Column (LWC) Volume of Water in Well (VW) Volume of Purge (VTP) (VTP = VW x 3)	Depth to Mid Screen(ft) Diameter of Well(in) (ft)

At Time of Measurements:	
Color CLEAR	Odor NONE
Total volume purged 3.3 gallons	Duration of purging 125 MIN
Purging method BLADDER PUMP	Did well go dry?
Weather conditions SUNNY, WARM BREE	ZV
,,,	/

Pump Serial Number # 31695
Water Quality Monitor Serial NumberMG15-11
Analyses Requested TRITIUM
Previous Final Readings: pH & Cond 0 Turb / DO Temp & ORP & DTW 1 Flow 0
1. DE DE DE LO LE PE E

Page 12 of 39

ES-4

Rev. 1

WATER QUALITY PARAMETERS (SAMPLE)

Form 2

	Sample F	Round /	MAV 20	221	MW-105R					
		5/1	19/21	······	Current	Readings	13	55-1	150	
	Time (min)	рН	Cond mS/cm	Turb (NTU)	D.O (mg/L)	Temp (°C)	ORP (mv)	DTW (feet)		Comments
TIME	0	+/- 0.1 std. unit	+/- 3%	+/- 10% NA <10NTU	+/-10%	+/- 1 E	+/-10 mv		1420	BEGIN PURG
(24 HR)	5									
	10									-
1435	15	7.74	0,551	3.63	4.57	14.35	151.5	24.78		
1440	20	7.62	0,547	3,85	3.81	14,73	-168,4	25.15	•	
1445	25	7.56	0,544	3,22	3,45	14.72	-178,3	25.40		
1450	30	7.50	0,541	1,91	3.07	14,70	-186.4	25,68		
1455	35	7,46	0,540	1,97	2.72	14.62	-190,2	25,93		
1500	40	7,43	0,536	2.04	2.49	14.75	-194.0	26,10		
1505	45	7,41	0,534	1.98	2:23	14.89	-196,2	26:33		
1510	50	7,38	0,534	1,93	2.02	14,62	-198.0	26,55	*	
1515	55	7.37	0,533	1.90	1.81	14,68	-196,7	26,70		
1520	60	7.36	0,533	1,89	1.67	14.40	-194.7	26.87		
525	65	7.37	0,533	1.77	1.53	14.40	-195.0	27.02		
1530	70	7.37	0,534	1.56	1.36	14.49	-195.0	27.16		
1535	75	7.37	0.536	1,50	1.25	14.26	-195.1	27.28		
1540	80	7.37	0.536	1,47	1,14	14.31	-195.0	27,39		
545	85	7.38	0.538	1,23	1.07	14.27	-195.2	27,51		
1550	90	7.38	0,538	1.05	0,98	14.26	-192.8	27.60		
1555	95	7.39	0,538	1.16	0,89	14,33	-192.6	27.69		
1600	100	7.39	0.537	1,22	0,83	14.40	-192.6	27.77		
1605	105	7,40	0,538	1.23	0.79	14,42	-191.9	27.80		
1610	110	7:40	0.537	1,20	0,77	14.46	-190,5	27.81		
1615	115	7.40	0,536	1,22	0,70	14,44	-189.1	27.82		
1620	120	7:40	0,537	1.19	0.71	14.40	-189.0	27.82		
1625	125	7.40	0,537	1,20	0.69	14.39	-188.3	27.82		
1626	130	Colle	ECT S	AMPLE			10019	- · I OL		
	135				·					
	140									
	145									
-	150									
-	155			· · · · · · · · · · · · · · · · · · ·						

CPM: 2 Page 13 of 39 PRESS: 45 REFILL: 27.0

GROUND WATER SAMPLING FIELD LOG (SAMPLE) Form 1										
Sample Location $MW - 107C$ Sampling Team $RENE AUBE$ Date $5/19/21$	Well Designation <u>MW-107C</u> Sample Period <u>MAY 2021</u> Time <u>1030-1335</u>									
Measuring Point <u>TOR</u> Well Depth (from measuring point) (D) Depth to water (DTW) Length of Water Column (LWC) Volume of Water in Well (VW)	Depth to Mid Screen(ft) Diameter of Well 2.0 (in) 42.95 (ft) 22.34 (ft) 20.61 (ft) (LWC=D-DTW) 330 gal Conversion									
Volume of Purge (VTP) (VTP = VW x 3)	gal Conversion Factor <u>O.12</u>									

At Time of Measurements:	
Color CLEAR	Odor NONE
Total volume purged <u>3.38</u>	Duration of purging 130 MIN
Purging method BLADDER PUMP	Did well go dry?
Weather conditions SUNNY, WARM, BR	EEZY

Pump Serial Number # 30623	
Water Quality Monitor Serial Number	
Analyses Requested TRITIUM	
Previous Final Readings: pH/ Cond M Turb DO / Temp V ORP DTW	Flow Ø
or or or or or or	, D
I	Pump Serial Number <u># 30623</u> Water Quality Monitor Serial Number <u>MOIS-II</u> Analyses Requested <u>TRITIUM</u> Previous Final Readings: pHC Cond Turb DO Temp ORP DTW

I	25	_	4
	10		T

					<u>F0</u>	<u>rm 2</u>				
	Sample	Round N	AY 20	21				Mu	1-107C	1
		5	/19/21		Curren	t Readings	1	030.	-1335	1
	(min)	pH	Cond mS/om	Turb (NTU)	D.O	Temp (°C)	ORP	DTW	Comments	1
	0	+/ 0.1	1115/CIII	1/ 100/	(mg/L)		(mv)	(feet)		
TIME	Ū	std. unit	T7- 3%	+/- 10% NA <10NTI	+/-10%	+/- 1 E	+/-10 mv		1105 BEGIN PU	RGE
(24 AR)	5			6.51	DELIA	21			100 ML/MIN	
1115	10	7.20	0,40	175	351	1201	11 157 11	211-2		
1120	15	7,20	0.400	6.30	3.46	1212	198,9	29,30	2	-
1125	20	7.20	0.794	5.82	341	1241	199.6	29,17	9	4
1130	25	7.20	0.393	6.76	3 74	1218	170.2	15,2	>	1
1135	30	7.20	0.392	1.33	721	12,40	136.7	13.6E	>	-
1140	35	7.20	0390	6.15	215	13:15	137.3	26,11	e	
1145	40	7.21	0.389	5.94	319	12:01	121.0	20,72	5	
1150	45	7.21	0.300	5.78	211	12:20	121.3	20,81		
1155	50	7.21	0.342	527	301	12.31	126.1	27110		
1200	55	7.21	0.738	5.55	293	13:40	121.2	27.90		
1205	60	7.22	4.387	6.00	211	12,27	111,0	1770		
1210	65	7.21	0.382	6.63	1721	12:20	108.2	21.10		
1215	70	7.22	0.321	6 77	217	13:50	99.0	21.75		
1220	75	7.22	0381	6.92	151	17.22	87.9	20.13		
1225	80	7.22	0,386	670	138	12,29	80:2	28.31		
1230	85	7.23	0.386	6.63	274	12,42	61.2	20,42		
1235	90	7.23	0.386	1.51	209	12.91	1016	20,53		
1240	95	7.23	1346	517	191	12:12	97.9	28,62		
1745	100	713	1.386	511	1,10	12,48	220	28,13		
1250	105	773	6.391	1170	170	12.91	20,8	18,8		
1255	110	773	A 391	1124	1.10	13,31	21.2	28.89		
1300	115	713	6 321	3 44	1.66	12.25	13.1	28.88		
1305	120	7.73	A 201	301	1,64	13,80	1.0	28,90		
1310	125	7.73	0.381	377	1.57	13.61	4.2	23,92		
1315	130	7.73	A 321	375	1,36	13.11	X.1:	28.92		
1312	135	COU	-CT	SAMOL	1.21	13.14	0,3	28,92		
1110	140	LULL	ec,	JAMP2	E					
-	145									
-	150									
	155									
L	155									

WATER QUALITY PARAMETERS (SAMPLE)

CPM: 2 DISCHARGE: 2.0 PRESS: 33 REFILL: 28.0

ANALYTICAL DATA - MAY 2021

RADIOLOGICAL DATA - MAY 2021

Radiological Data - May 2021

Yankee Nuclear Power Station

Sample Delivery Group				545280			545280	כ	545280			
Location			MW-105B			MW-107C				SP-1		
		Sa	ample Date	5/19/2021				5/19/20	21		5/20/202	21
			Sample ID	MW-105B				MW-107	7C		SP-1	
			Qc Code		FS			FS			FS	
Analysis	Fraction	Parameter	Units	Result	Qualifier	Uncertainty	Result	Qualifier	Uncertainty	Result	Qualifier	Uncertainty
E901.1	N	Antimony-125	PCI/L								30 U	3.11
E901.1	N	Cesium-134	PCI/L								10 U	1.23
E901.1	N	Cesium-137	PCI/L								20 U	1.58
E901.1	N	Cobalt-60	PCI/L								10 U	1.47
E901.1	N	Europium-152	PCI/L								20 U	3.76
E901.1	N	Europium-154	PCI/L								30 U	3.6
E901.1	N	Europium-155	PCI/L								60 U	5.38
E901.1	Ν	Niobium-94	PCI/L								50 U	1.28
E901.1	N	Silver-108	PCI/L								15 U	1.11
E905.0	N	Strontium-90	PCI/L								2 U	0.475
E906.0	N	Tritium	PCI/L	1,02	20	385	2,63	0	658	7	00 U	256

NOTES:

pCi/L = picocurie per liter

U = not detected at the reported quanitation limit

FS = field sample

CHEMICAL DATA - MAY 2021

APPENDIX C-2 Chemical Data - May 2021

Yankee Nuclear Power Station

Sample Delivery Grou			ivery Group	545280	545280	545280	545280	545280	545280	545280	545280	545280
		Sumple Der	Location	CFW-1	CFW-5	CFW/-5	CFW-6	00	SP-1	SW/-1	SW-4	SW-5
		s	Sample Date	5/20/2021	5/10/2021	5/10/2021	5/10/2021	5/20/2021	5/20/2021	5/20/2021	5/20/2021	5/20/2021
			Sample ID	CEW-1	CEW-5	CEW-5 DUP	CEW/-6	J/20/2021	SP_1	S\N/_1	5/20/2021 SW/-A	SW-5
			Sample ID		CI W-5		CI W-0	TD-003	JF-1	500-1	500-4	500-5
Analysis	Eraction	Paramotor	Unite	F3 Recult Oublifier	F3 Result Oublifier	Posult Oublifier	F3 Result Oublifier	Posult Qualifier	F3 Result Ouplifier	F3 Result Qualifier	F3 Result Oublifier	F3 Result Qualifier
SW/9260D	N	1 1 1 2 Totrachloroothano	MG/I	Nesure Quaimer	Result Qualifier	Nesult Qualifier	Result Qualifier					
SW8260D	N	1,1,1,2-retrachioroethane	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	1 1 2 2-Tetrachloroethane	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	1.1.2-Trichloroethane	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	1 1-Dichloroethane	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	1.1-Dichloroethene	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	1.2.4-Trichlorobenzene	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	1.2-Dibromoethane	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	1.2-Dichlorobenzene	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	1,2-Dichloroethane	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	1.2-Dichloropropane	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	1,3-Dichlorobenzene	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	1,3-Dichloropropene (total)	MG/L					0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
SW8260D	N	1,4-Dichlorobenzene	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	2-Butanone	MG/L					0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
SW8260D	N	4-Methyl-2-pentanone	MG/L					0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
SW8260D	N	Acetone	MG/L					0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
SW8260D	N	Benzene	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	Bromodichloromethane	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	Bromoform	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	Bromomethane	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	Carbon tetrachloride	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	Chlorobenzene	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	Chloroform	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	cis-1,2-Dichloroethene	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	Dibromochloromethane	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	Ethylbenzene	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	Methyl Tertbutyl Ether	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	Methylene chloride	MG/L					0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
SW8260D	Ν	Naphthalene	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	Styrene	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	Tetrachloroethene	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	Toluene	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	trans-1,2-Dichloroethene	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	Trichloroethene	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	Vinyl chloride	MG/L					0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	Xylenes, Total	MG/L					0.003 U	0.003 U	0.003 U	0.003 U	0.003 U
SW8270E-SIM	N	1,4-Dioxane	UG/L						0.4 U	0.4 U	0.4 U	0.4 U
SW6020	Т	Calcium	MG/L	1.58	27.2	28.4	10.2			2.21	2.94	3.56
SW6020	Т	Iron	MG/L	7.37	33.9	35.4	3.41			0.104	12.5	30.7
SW6020	Т	Manganese	MG/L	0.203	2.66	2.72	1.74			0.0132	0.25	0.338
SW7470A	D	Mercury	MG/L						0.0002 U	0.0002 U	0.0002 U	0.0002 UJ
SW6020	D	Arsenic	MG/L						0.005 U	0.005 U	0.005 U	0.005 U
SW6020	D	Barium	MG/L						0.0222	0.00956	0.0132	0.0126
SW6020	D	Cadmium	MG/L						0.001 U	0.001 U	0.001 U	0.001 U
SW6020	D	Chromium	MG/L						0.01 U	0.01 U	0.01 U	0.01 U
SW6020	D	Lead	MG/L						0.002 U	0.002 U	0.002 U	0.002 U
SW6020	D	Selenium	MG/L						0.005 U	0.005 U	0.005 U	0.005 U
SW6020	D	Silver	MG/L						0.001 U	0.001 U	0.001 U	0.001 U
E410.4	N	Chemical Oxygen Demand	MG/L	20 U	41.6	45.8	29.1			17.2 J	12.2 J	12.2 J
SM2320B	N	Total Alkalinity, as CaCO3	MG/L	5.74	115	119	31.1	1		6.53	8.51	9.31 J

NOTES:

D = dissolved

T, N = total

MG/L = milligram per liter U = not detected at the reported quanitation limit

J = concentration is estimated

J+ = concentration is estimated with potential high bias FS = field sample, FD = field duplicate, TB = trip blank

Appendix C-2 Chemical Data - May 2021

VALIDATION CHECKLISTS – MAY 2021

DATA VALIDATION SUMMARY MAY 2021 SAMPLING YANKEE NUCLEAR POWER STATION ROWE, MASSACHUSETTS

1.0 INTRODUCTION

Groundwater and surface water samples were collected May 19-20, 2021, at the Yankee Nuclear Power Station, located in Rowe, Massachusetts. Sample analyses for all parameters were performed by GEL Laboratories, located in Charleston, South Carolina. Samples were analyzed by one or more of the following United States Environmental Protection Agency (USEPA) methods:

- Volatile Organic Compounds (VOCs) by Method 8260D
- 1,4-Dioxane by Method 8270E Selected Ion Monitoring (SIM)
- RCRA Metals (dissolved) by Methods 6020B/7470A
- Calcium, iron, and manganese by Method 6020B
- Alkalinity by Method 2320B
- Chemical Oxygen Demand (COD) by Method 410.4
- Isotopes by Gamma Spectroscopy Method 901.1
- Strontium-90 by Method 905.0 Modified
- Tritium by Method 906.0 Modified

A chemist review was performed on the samples in the data set using information supplied by the laboratory. Chemistry data were validated using guidance for Stage 2A data validation (USEPA, 2009) identified in the Region 1 EPA-New England Environmental Data Review Program Guidance (USEPA, 2018) and the USEPA National Functional Guidelines (USEPA, 2017a; USEPA, 2017b). Radiochemistry data were validated in accordance with the Yankee Nuclear Power Station (YNPS) Site procedure ES-4, Revision 1 (YNPS, 2021).

Results were reported in GEL sample delivery group (SDG) 545280. A listing of samples included in this chemistry review is presented in Table 1. A summary of the analytical results is presented in Table 2.

The following data qualifiers are used in the final data presentation:

U = target analyte is not detected at or above the reported detection limit or is qualified as not detected J = concentration is estimated

J+ = concentration is estimated with potential high bias

Documentation of validation actions is presented in Table 3. Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections.

2.0 DATA REVIEW SUMMARY

2.1 VOCs

Data were evaluated for the following parameters:

- * Collection and Preservation
- * Holding Times
- * Data Completeness
- * Surrogate Recoveries

- * Blank Contamination
- * Laboratory Control Samples (LCS)
- * Miscellaneous

* - all criteria were met for this parameter

The results of all associated quality control measurements were within control limits, and sample results were determined to be usable as reported by the laboratory.

2.2 1,4-Dioxane

Data were evaluated for the following parameters:

- * Collection and Preservation
- * Holding Times
- * Data Completeness
- * Surrogate Recoveries
- * Blank Contamination
- * LCS
- * Miscellaneous
- * all criteria were met for this parameter

The results of all associated quality control measurements were within control limits, and sample results were determined to be usable as reported by the laboratory.

2.3 Metals

Data were evaluated for the following parameters:

- * Collection and Preservation Holding Times
- * Data Completeness
- Blank Contamination
- * Field Duplicates
- * LCS
- * Matrix Spike/Matrix Spike Duplicate (MS/MSD) Miscellaneous
- * all criteria were met for this parameter

With the following exception, results of all associated quality control measurements were within control limits, and sample results were determined to be usable as reported by the laboratory.

Holding Times

Due to laboratory error, sample SW-5 was initially analyzed for total RCRA metals, including mercury rather than dissolved RCRA metals as requested on the chain of custody (COC). The laboratory analyzed the field filtered sample on June 24, 2021, seven days after expiration of the holding time (28 days). The reporting limit for dissolved mercury in sample SW-5 was qualified estimated (UJ) and the result is included in Table 3 with reason code HT.

Blank Contamination

Mercury (0.000187 J mg/L) was reported in the method blank associated with samples SP-1, SW-1, and SW-4. Low concentration detections less than the reporting limit (0.0002 mg/L) for mercury were qualified non-detect (U) at the reporting limit in samples SP-1, SW-1, and SW-4. Qualified results are summarized in Table 3.

Miscellaneous

Surface water samples SW-1, SW-4, and SW-5 were initially analyzed for metals using the incorrect fraction (total, dissolved) for some of the metals. As a result, sample SW-1 was reanalyzed for total calcium, iron, and manganese using the total metals container, sample SW-4 was reanalyzed for dissolved RCRA metals by Method 6020 using the filtered metals container, and sample SW-5 was reanalyzed for dissolved RCRA metals by Methods 6020 and 7470A using the filtered metals container. Results from the reanalyses have been reported in the final data set.

2.4 Wet Chemistry

Data were evaluated for the following parameters:

- * Collection and Preservation
- * Holding Times
- * Data Completeness
- * Blank Contamination
- * Duplicates
- * Field Duplicates
- * LCS
- * MS
- Miscellaneous

* - all criteria were met for this parameter

The results of all associated quality control measurements were within control limits, and sample results were determined to be usable as reported by the laboratory.

2.5 Radiological Parameters

Data were evaluated for the following parameters:

- * Collection and Preservation
- Holding Times
- * Data Completeness
- * Blank Contamination
- * Duplicates
- * LCS
- * MS
- Miscellaneous
- * all criteria were met for this parameter

The results of all associated quality control measurements were within control limits, and sample results were determined to be usable as reported by the laboratory.

References:

USEPA, 2009. "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use"; Office of Solid Waste and Emergency Response; EPA-540-R-08-005; January 2009.

- USEPA, 2017a. "USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Data Review"; Office of Emergency and Remedial Response; EPA-540-/R-2017-002; January 2017.
- USEPA, 2017b. "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Methods Data Review"; Office of Superfund Remediation and Technology Innovation; EPA-540-R-2017-001; January 2017.
- USEPA, 2018. "Region I EPA-New England Environmental Data Review Program Guidance"; Office of Environmental Measurement and Evaluation (OEME); June 2018.

YNPS, 2021. "YNPS Groundwater Monitoring Program." ISFSI Environmental, Safety and Health, ES-4; Revision 1; February 2021.

Data Validator:

Julie Ricardi Julie Rinanci

Senior Reviewed:

Chris Ricardi, NRCC-EAC Chris Ricardo

June 28, 2021

June 28, 2021

TABLE 1 - SUMMARY OF SAMPLES AND ANALYTICAL METHODS DATA VALIDATION SUMMARY YANKEE NUCLEAR POWER STATION ROWE, MASSCHUSETTS

MAY 2021 SAMPLING EVENT

					М	ethod Class	VOCs	1,4-Dioxane	Me	tals	Mercury	COD	Alkalinity		RAD	
					Analy	sis Method	SW8260D	SW8270E-SIM	SW6020	SW6020	SW7470A	E410.4	SM2320B	E901.1	E905.0	E906.0
						Fraction	Ν	Ν	Т	D	D	Ν	N	Ν	Ν	Ν
		Field Sample	Field Sample		Lab Sample											
SDG	Location	ID	Date	Media	ID	QC Code										
545280	CFW-1	CFW-1	5/20/2021	GW	545280006	FS			3			1	1			
545280	CFW-5	CFW-5	5/19/2021	GW	545280004	FS			3			1	1			
545280	CFW-5	CFW-5 DUP	5/19/2021	GW	545280005	FD			3			1	1			
545280	CFW-6	CFW-6	5/19/2021	GW	545280003	FS			3			1	1			
545280	MW-105B	MW-105B	5/19/2021	GW	545280002	FS										1
545280	MW-107C	MW-107C	5/19/2021	GW	545280001	FS										1
545280	QC	TB-009	5/20/2021	BW	545280011	ТВ	37									
545280	SP-1	SP-1	5/20/2021	GW	545280007	FS	37	1		7	1			9	1	1
545280	SW-1	SW-1	5/20/2021	SW	545280008	FS	37	1	3	7	1	1	1			
545280	SW-4	SW-4	5/20/2021	SW	545280009	FS	37	1	3	7	1	1	1			
545280	SW-5	SW-5	5/20/2021	SW	545280010	FS	37	1	3	7	1	1	1			

NOTES:

T, N = total, D = dissolved

FS = field sample, FD = field duplicate, TB = trip blank

GW = groundwater

SW = surface water

BW = blank water

RAD = radiological parameters

COD = chemical oxygen demand

TABLE 2 - SUMMARY OF ANALYTICAL RESULTS DATA VALIDATION SUMMARY YANKEE NUCLEAR POWER STATION ROWE, MASSACHUSETTS

MAY 2021 - VOCs

Sample Delivery				545280	545280	545280	545280
			Location	QC	SP-1	SW-1	SW-4
		S	ample Date	5/20/2021	5/20/2021 5/20/2021		5/20/2021
			Sample ID	TB-009	SP-1	SW-1	SW-4
			Qc Code	ТВ	FS	FS	FS
Analysis	Fraction	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260D	Ν	1,1,1,2-Tetrachloroethane	MG/L	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	1,1,1-Trichloroethane	MG/L	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	1,1,2,2-Tetrachloroethane	MG/L	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	1,1,2-Trichloroethane	MG/L	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	1,1-Dichloroethane	MG/L	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	N	1,1-Dichloroethene	MG/L	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	1,2,4-Trichlorobenzene	MG/L	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	1,2-Dibromoethane	MG/L	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	1,2-Dichlorobenzene	MG/L	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	1,2-Dichloroethane	MG/L	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	1,2-Dichloropropane	MG/L	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	1,3-Dichlorobenzene	MG/L	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	1,3-Dichloropropene (total)	MG/L	0.002 U	0.002 U	0.002 U	0.002 U
SW8260D	Ν	1,4-Dichlorobenzene	MG/L	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	2-Butanone	MG/L	0.005 U	0.005 U	0.005 U	0.005 U
SW8260D	Ν	4-Methyl-2-pentanone	MG/L	0.005 U	0.005 U	0.005 U	0.005 U
SW8260D	Ν	Acetone	MG/L	0.005 U	0.005 U	0.005 U	0.005 U
SW8260D	Ν	Benzene	MG/L	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	Bromodichloromethane	MG/L	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	Bromoform	MG/L	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	Bromomethane	MG/L	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	Carbon tetrachloride	MG/L	0.001 U	0.001 U	0.001 U 0.001 U	
SW8260D	Ν	Chlorobenzene	MG/L	0.001 U	0.001 U	0.001 U	0.001 U
SW8260D	Ν	Chloroform	MG/L	0.001 U	0.001 U	0.001 U	0.001 U
MAY 2021 - VOCs

		Sample Deli	very Group	545	5280	545	5280	54	5280	545	5280
			Location	C	QC	SI	P-1	S۱	N-1	S٧	N-4
		S	ample Date	5/20	5/20/2021		5/20/2021		/2021	5/20	/2021
			Sample ID	TB-009		SI	P-1	SW-1		SW-4	
			Qc Code	٦	ГВ	FS			FS	FS	
Analysis	Fraction	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260D	Ν	cis-1,2-Dichloroethene	MG/L	0.001	U	0.001	U	0.001	U	0.001	U
SW8260D	N	Dibromochloromethane	MG/L	0.001	U	0.001	U	0.001	U	0.001	U
SW8260D	N	Ethylbenzene	MG/L	0.001	U	0.001	U	0.001	U	0.001	U
SW8260D	Ν	Methyl Tertbutyl Ether	MG/L	0.001	U	0.001	U	0.001	U	0.001	U
SW8260D	Ν	Methylene chloride	MG/L	0.005	U	0.005	U	0.005	U	0.005	U
SW8260D	Ν	Naphthalene	MG/L	0.001	U	0.001	U	0.001	U	0.001	U
SW8260D	N	Styrene	MG/L	0.001	U	0.001	U	0.001	U	0.001	U
SW8260D	N	Tetrachloroethene	MG/L	0.001	U	0.001	U	0.001	U	0.001	U
SW8260D	N	Toluene	MG/L	0.001	U	0.001	U	0.001	U	0.001	U
SW8260D	Ν	trans-1,2-Dichloroethene	MG/L	0.001	U	0.001	U	0.001	U	0.001	U
SW8260D	N	Trichloroethene	MG/L	0.001	U	0.001	U	0.001	U	0.001	U
SW8260D	Ν	Vinyl chloride	MG/L	0.001	U	0.001	U	0.001	U	0.001	U
SW8260D	Ν	Xylenes, Total	MG/L	0.003	U	0.003	U	0.003	U	0.003	U

NOTES:

VOCs = volatile organic compounds

N = total

mg/L = milligram per liter

U = not detected at the reported quanitation limit

FS = field sample, TB = trip blank

MAY 2021 - VOCs

		Sample Del	very Group	545280
		Location	SW-5	
		S	ample Date	5/20/2021
			Sample ID	SW-5
			Qc Code	FS
Analysis	Fraction	Parameter	Units	Result Qualifier
SW8260D	Ν	1,1,1,2-Tetrachloroethane	MG/L	0.001 U
SW8260D	Ν	1,1,1-Trichloroethane	MG/L	0.001 U
SW8260D	Ν	1,1,2,2-Tetrachloroethane	MG/L	0.001 U
SW8260D	Ν	1,1,2-Trichloroethane	MG/L	0.001 U
SW8260D	Ν	1,1-Dichloroethane	MG/L	0.001 U
SW8260D	Ν	1,1-Dichloroethene	MG/L	0.001 U
SW8260D	Ν	1,2,4-Trichlorobenzene	MG/L	0.001 U
SW8260D	Ν	1,2-Dibromoethane	MG/L	0.001 U
SW8260D	Ν	1,2-Dichlorobenzene	MG/L	0.001 U
SW8260D	Ν	1,2-Dichloroethane	MG/L	0.001 U
SW8260D	Ν	1,2-Dichloropropane	MG/L	0.001 U
SW8260D	Ν	1,3-Dichlorobenzene	MG/L	0.001 U
SW8260D	Ν	1,3-Dichloropropene (total)	MG/L	0.002 U
SW8260D	Ν	1,4-Dichlorobenzene	MG/L	0.001 U
SW8260D	Ν	2-Butanone	MG/L	0.005 U
SW8260D	Ν	4-Methyl-2-pentanone	MG/L	0.005 U
SW8260D	Ν	Acetone	MG/L	0.005 U
SW8260D	Ν	Benzene	MG/L	0.001 U
SW8260D	Ν	Bromodichloromethane	MG/L	0.001 U
SW8260D	Ν	Bromoform	MG/L	0.001 U
SW8260D	Ν	Bromomethane	MG/L	0.001 U
SW8260D	Ν	Carbon tetrachloride	MG/L	0.001 U
SW8260D	Ν	Chlorobenzene	MG/L	0.001 U
SW8260D	Ν	Chloroform	MG/L	0.001 U

MAY 2021 - VOCs

		Sample Del	very Group	545	5280
			Location	S۱	N-5
		S	ample Date	5/20	/2021
			Sample ID	S۱	N-5
			Qc Code	I	FS
Analysis	Fraction	Parameter	Units	Result	Qualifier
SW8260D	Ν	cis-1,2-Dichloroethene	MG/L	0.001	U
SW8260D	Ν	Dibromochloromethane	MG/L	0.001	U
SW8260D	Ν	Ethylbenzene	MG/L	0.001	U
SW8260D	Ν	Methyl Tertbutyl Ether	MG/L	0.001	U
SW8260D	Ν	Methylene chloride	MG/L	0.005	U
SW8260D	Ν	Naphthalene	MG/L	0.001	U
SW8260D	Ν	Styrene	MG/L	0.001	U
SW8260D	Ν	Tetrachloroethene	MG/L	0.001	U
SW8260D	Ν	Toluene	MG/L	0.001	U
SW8260D	Ν	trans-1,2-Dichloroethene	MG/L	0.001	U
SW8260D	Ν	Trichloroethene	MG/L	0.001	U
SW8260D	N	Vinyl chloride	MG/L	0.001	U
SW8260D	Ν	Xylenes, Total	MG/L	0.003	U

NOTES:

VOCs = volatile organic compounds

N = total

mg/L = milligram per liter

U = not detected at the reported quanitation limit

FS = field sample, TB = trip blank

MAY 2021 - 1,4-DIOXANE

		Sample De	livery Group	54	5280	545	5280	545280		545280	
			Location	S	P-1	SW-1		SW-4		SW-5	
	Sample Date			5/20/2021		5/20/2021		5/20/2021		5/20/2021	
	Sample ID			SP-1		S۱	N-1	S۱	V-4	SW-5	
			Qc Code	FS		FS		FS		FS	
Analysis	nalysis Fraction Parameter Units			Result Qualifier		Result Qualifier		Result Qualifier		Result	Qualifier
SW8270E-SIM	0E-SIM N 1,4-Dioxane UG/L		0.4 U		0.4 U		0.4 U		0.4 U		

NOTES:

ug/I = microgram per liter

N = total

U = not detected at the reported quanitation limit

FS = field sample, TB = trip blank

MAY 2021 - INORGANICS

		Sample Deliv	very Group	545	5280	545	5280	545	5280	545	5280
			Location	CF	W-1	CF	W-5	CF	W-5	CF	W-6
		Sa	ample Date	5/20/2021		5/19/2021		5/19/2021		5/19/2021	
			Sample ID	CFW-1		CFW-5		CFW-5 DUP		CFW-6	
	Qc Code		FS		FS		F	D	F	S	
Analysis	Fraction	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW7470A	D	Mercury	MG/L								
SW6020	D	Arsenic	MG/L								
SW6020	D	Barium	MG/L								
SW6020	D	Cadmium	MG/L								
SW6020	D	Chromium	MG/L								
SW6020	D	Lead	MG/L								
SW6020	D	Selenium	MG/L								
SW6020	D	Silver	MG/L								
E410.4	N	Chemical Oxygen Demand	MG/L	20	U	41.6		45.8		29.1	
SM2320B	N	Total Alkalinity, as CaCO3	MG/L	5.74		115		119		31.1	
SW6020	Т	Calcium	MG/L	1.58		27.2		28.4		10.2	
SW6020	Т	Iron	MG/L	7.37		33.9		35.4		3.41	
SW6020	Т	Manganese	MG/L	0.203		2.66		2.72		1.74	

NOTES:

mg/L = milligram per liter

U = not detected at the reported quanitation limit

J = estimated value

FS = field sample, FD = field duplicate

T, N = total, D = dissolved

MAY 2021 - INORGANICS

		Sample Deliv	very Group	545	5280	54	5280	545	5280	545	5280
			Location	SI	P-1	S۱	N-1	S۱	V-4	SV	V-5
		Sa	ample Date	5/20	/2021	5/20/2021		5/20/2021		5/20	/2021
			Sample ID	SI	P-1	S۱	N-1	S٧	V-4	SV	V-5
			Qc Code	FS		FS		I	S	F	-S
Analysis	Fraction	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW7470A	D	Mercury	MG/L	0.0002	U	0.0002	2 U	0.0002	U	0.0002	UJ
SW6020	D	Arsenic	MG/L	0.005	U	0.005	υ	0.005	U	0.005	U
SW6020	N6020 D Barium MG/		MG/L	0.0222		0.00956		0.0132		0.0126	
SW6020	D	Cadmium	MG/L	0.001	U	0.001	. U	0.001	U	0.001	U
SW6020	D	Chromium	MG/L	0.01	U	0.01	U	0.01	U	0.01	U
SW6020	D	Lead	MG/L	0.002	U	0.002	2 U	0.002	U	0.002	U
SW6020	D	Selenium	MG/L	0.005	U	0.005	i U	0.005	U	0.005	U
SW6020	D	Silver	MG/L	0.001	U	0.001	U	0.001	U	0.001	U
E410.4	N	Chemical Oxygen Demand	MG/L			17.2	2 J	12.2	J	12.2	J
SM2320B	Ν	Total Alkalinity, as CaCO3	MG/L			6.53		8.51		9.31	
SW6020	Т	Calcium	MG/L			2.21		2.94		3.56	
SW6020	Т	Iron	MG/L			0.104	Ļ	12.5		30.7	
SW6020	Т	Manganese	MG/L			0.0132		0.25		0.338	

NOTES:

mg/L = milligram per liter

U = not detected at the reported quanitation limit

J = estimated value

FS = field sample, FD = field duplicate

T, N = total, D = dissolved

MAY 2021 - RADIOLOGICAL PARAMETERS

		Sample Deliv	very Group		545280)		54528)		545280)
			Location		MW-105	5B		MW-10	7C		SP-1	
		Sa	ample Date		5/19/20	21		5/19/20	21		5/20/202	21
			Sample ID		MW-105	5B		MW-10	7C		SP-1	
			Qc Code		FS			FS			FS	
Analysis	Fraction	Parameter	Units	Result	Qualifier	Uncertainty	Result	Qualifier	Uncertainty	Result	Qualifier	Uncertainty
E901.1	N	Antimony-125	PCI/L								30 U	3.11
E901.1	N	Cesium-134	PCI/L								10 U	1.23
E901.1	N	Cesium-137	PCI/L								20 U	1.58
E901.1	N	Cobalt-60	PCI/L								10 U	1.47
E901.1	N	Europium-152	PCI/L								20 U	3.76
E901.1	N	Europium-154	PCI/L								30 U	3.6
E901.1	N	Europium-155	PCI/L								60 U	5.38
E901.1	N	Niobium-94	PCI/L								50 U	1.28
E901.1	N	Silver-108	PCI/L								15 U	1.11
E905.0	N	Strontium-90	PCI/L								2 U	0.475
E906.0	N	Tritium	PCI/L	1,02	20	385	2,630		658	7	'00 U	256

NOTES:

pCi/L = picocurie per liter

U = not detected at the reported quanitation limit

FS = field sample

TABLE 3 - SUMMARY OF VALIDATION ACTIONS DATA VALIDATION SUMMARY YANKEE NUCLEAR POWER STATION ROWE, MASSACHUSETTS

MAY 2021

										Val	
			Field		Parameter		Lab	Final	Final	Reason	
SDG	Method	Lab Sample ID	Sample ID	Fraction	Name	Lab Result	Qualifier	Result	Qualifier	Code	Units
545280	SW7470A	545280007	SP-1	D	Mercury	0.000161	J	0.0002	U	BL1	MG/L
545280	SW7470A	545280008	SW-1	D	Mercury	0.000157	J	0.0002	U	BL1	MG/L
545280	SW7470A	545280009	SW-4	D	Mercury	0.000152	J	0.0002	U	BL1	MG/L
545280	SW7470A	545280014	SW-5	D	Mercury	0.0002	U	0.0002	UJ	НТ	MG/L

Notes:

BL1 = method blank contamination

HT = preparation and/or analysis holding time exceeded

J = estimated value

J+ = estimated value biased high

mg/L = milligram per liter

T, N = total, D = dissolved

U = not detected at the reported quanitation limit

ISFSI Environmental, Safety and Health	ES-4
	Rev. 1

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

Sample ID	Analysis Date	Sample Designator (Note 1)	All Scheduled Analyses Performed?	Sample Processing Comments?	Units Correct?	Assessment Criteria (Note 2) (Note 3)
SP-1	6/3/21	FS	Yes	O.K.	Yes	See attached checklist
SW-1	6/3/21	FS	Yes	O.K.	Yes	See attached checklist
SW-4	6/3/21	FS	Yes	O.K.	Yes	See attached checklist
SW-5	6/3/21	FS	Yes	O.K.	Yes	See attached checklist
TB-009	6/3/21	BL (Trip)	Yes	O.K.	Yes	See attached checklist
Laboratory QC						
QC1204836269	6/3/21	BL	Yes	O.K.	Yes	See attached checklist
QC1204836270	6/4/21	BL	Yes	O.K.	Yes	See attached checklist
QC1204836267	6/3/21	QC	Yes	O.K.	Yes	See attached checklist
QC1204836268	6/4/21	QC	Yes	O.K.	Yes	See attached checklist
QC1204836171	6/5/21	SK	Yes	O.K.	Yes	See attached checklist
QC1204836272	6/5/21	SK	Yes	O.K.	Yes	See attached checklist

Volatile Organic Compounds (VOCs)

- 1.0 FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
- 2.0 Reported MDC \leq Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
- 3.0 Requirements for SK, DU, and QC per section D.
- I. All Requested analyses performed on all samples? X_Yes ____No
- II. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes.
- III. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes.
- IV. Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):See attached checklist for details; no sample qualifications required.
- V. Data verification calculation sheets are attached(at least one calculation per batch) NA

Julie Rinandi Reviewer Date June 21, 2021

ISFSI Environmental, Safety and Health	ES-4
	Rev. 1

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

Sample ID	Analysis Date	Sample Designator (Note 1)	All Scheduled Analyses Performed?	Sample Processing Comments?	Units Correct?	Assessment Criteria (Note 2) (Note 3)
SP-1	5/26/21	FS	Yes	O.K.	Yes	See attached checklist
SW-1	5/26/21	FS	Yes	O.K.	Yes	See attached checklist
SW-4	5/26/21	FS	Yes	O.K.	Yes	See attached checklist
SW-5	5/26/21	FS	Yes	O.K.	Yes	See attached checklist
Laboratory QC						
QC1204828220	5/26/21	BL	Yes	O.K.	Yes	See attached checklist
QC1204828221	5/26/21	QC	Yes	O.K.	Yes	See attached checklist
QC1204828222	5/26/21	SK	Yes	O.K.	Yes	See attached checklist
QC1204828223	5/26/21	SK	Yes	O.K.	Yes	See attached checklist

Semivolatile Organic Compounds (1,4-Dioxane)

- 1.0 FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
- 2.0 Reported MDC \leq Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
- 3.0 Requirements for SK, DU, and QC per section D.
- I. All Requested analyses performed on all samples? X_Yes No
- II. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes.
- III. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes.
- IV. Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):See attached checklist for details; no sample qualifications required.
- V. Data verification calculation sheets are attached(at least one calculation per batch) NA

ISFSI Environmental, Safety and Health	ES-4	
	Rev. 1	

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

Sample ID	Analysis Date	Sample Designator (Note 1)	All Scheduled Analyses Performed?	Sample Processing Comments?	Units Correct?	Assessment Criteria (Note 2) (Note 3)
SW-1	6/23/21	FS	Yes	See II. below	Yes	See attached checklist
SW-4	6/4/21	FS	Yes	O.K.	Yes	See attached checklist
SW-5	6/4/21	FS	Yes	O.K.	Yes	See attached checklist
CFW-1	6/4/21	FS	Yes	O.K.	Yes	See attached checklist
CFW-5	6/4/21	FS	Yes	O.K.	Yes	See attached checklist
CFW-5 DUP	6/4/21	DU	Yes	O.K.	Yes	See attached checklist
CFW-6	6/4/21	FS	Yes	O.K.	Yes	See attached checklist
Laboratory QC						
QC1204831651	6/4/21	BL	Yes	O.K.	Yes	See attached checklist
QC1204831652	6/4/21	QC	Yes	O.K.	Yes	See attached checklist
QC1204831653	6/4/21	SK	Yes	O.K.	Yes	See attached checklist
QC1204831654	6/4/21	SK	Yes	O.K.	Yes	See attached checklist
QC1204848868	6/23/21	BL	Yes	O.K.	Yes	See attached checklist
QC1204848869	6/23/21	QC	Yes	O.K.	Yes	See attached checklist
QC1204848870	6/23/21	SK	Yes	O.K.	Yes	See attached checklist
QC1204848871	6/23/21	SK	Yes	O.K.	Yes	See attached checklist

Total Metals

- 1.0 FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
- 2.0 Reported MDC \leq Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
- 3.0 Requirements for SK, DU, and QC per section D.
- I. All Requested analyses performed on all samples? X_Yes ____No
- II. Resolution of Sample Processing/Missing Analytes comments: Sample SW-1 initially analyzed using the Filtered Metals container; correct container used for reanalysis completed on 6/23/21.
- III. Resolution of Sample Processing/Missing Analytes comments: See II. Above.
- IV. Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):

	ATTACHMENT C	
		Rev. 1
ISFSI Environmental, Safety and Health		ES-4

See attached checklist for details; no sample qualifications required.

Data verification calculation sheets are attached(at least one calculation per batch) NA V.

Reviewer_____ Date__June 28, 2021

ISFSI Environmental, Safety and Health	ES-4	
	Rev. 1	

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

Sample ID	Analysis Date	Sample Designator (Note 1)	All Scheduled Analyses Performed?	Sample Processing Comments?	Units Correct?	Assessment Criteria (Note 2) (Note 3)
SP-1	6/4/21	FS	Yes	O.K.	Yes	See attached checklist
SW-1	6/4/21	FS	Yes	O.K.	Yes	See attached checklist
SW-4	6/23/21	FS	Yes	See II. below	Yes	See attached checklist
SW-5	6/24/21	FS	Yes	See II. below	Yes	See attached checklist
CFW-1	6/4/21	FS	Yes	O.K.	Yes	See attached checklist
CFW-5	6/4/21	FS	Yes	O.K.	Yes	See attached checklist
CFW-5 DUP	6/4/21	DU	Yes	O.K.	Yes	See attached checklist
CFW-6	6/4/21	FS	Yes	O.K.	Yes	See attached checklist
Laboratory QC						
QC1204831651	6/4/21	BL	Yes	O.K.	Yes	See attached checklist
QC1204831652	6/4/21	QC	Yes	O.K.	Yes	See attached checklist
QC1204831653	6/4/21	SK	Yes	O.K.	Yes	See attached checklist
QC1204831654	6/4/21	SK	Yes	O.K.	Yes	See attached checklist
QC1204848868	6/23/21	BL	Yes	O.K.	Yes	See attached checklist
QC1204848869	6/23/21	QC	Yes	O.K.	Yes	See attached checklist
QC1204848870	6/23/21	SK	Yes	O.K.	Yes	See attached checklist
QC1204848871	6/23/21	SK	Yes	O.K.	Yes	See attached checklist

Dissolved Metals

NOTE

- 1.0 FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
- 2.0 Reported MDC \leq Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
- 3.0 Requirements for SK, DU, and QC per section D.
- I. All Requested analyses performed on all samples? X_Yes No
- II. Resolution of Sample Processing/Missing Analytes comments:

SW-4 and SW-5 initially analyzed using total metals container; correct container used for reanalyses performed 6/23-6/24/21

III. Resolution of Sample Processing/Missing Analytes comments: See II. Above.

ISFSI Environmental, Safety and Health		ES-4
		Rev. 1
	ATTACHMENT C	

ASSESSMENT OF DATA QUALITY

IV. Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):See attached checklist for details; no sample qualifications required.

V. Data verification calculation sheets are attached(at least one calculation per batch) NA

Reviewer_Julii Rinai Date June 28, 2021

ISFSI Environmental, Safety and Health	ES-4	
	Rev. 1	

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

Sample ID	Analysis Date	Sample Designator (Note 1)	All Scheduled Analyses Performed?	Sample Processing Comments?	Units Correct?	Assessment Criteria (Note 2) (Note 3)
SP-1	6/15/21	FS	Yes	O.K.	Yes	See attached checklist
SW-1	6/15/21	FS	Yes	O.K.	Yes	See attached checklist
SW-4	6/15/21	FS	Yes	O.K.	Yes	See attached checklist
SW-5	6/24/21	FS	Yes	See II. below	Yes	See attached checklist
Laboratory QC						
QC1204842288	6/15/21	BL	Yes	See IV. below	Yes	See attached checklist
QC1204842289	6/15/21	QC	Yes	O.K.	Yes	See attached checklist
QC1204842290	6/15/21	DU	Yes	O.K.	Yes	See attached checklist
QC1204842291	6/15/21	SK	Yes	O.K.	Yes	See attached checklist
QC1204849214	6/24/21	BL	Yes	O.K.	Yes	See attached checklist
QC1204849215	6/24/21	QC	Yes	O.K.	Yes	See attached checklist
QC1204849219	6/24/21	DU	Yes	O.K.	Yes	See attached checklist
QC1204849220	6/24/21	SK	Yes	O.K.	Yes	See attached checklist

Dissolved Mercury

NOTE

- 1.0 FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
- 2.0 Reported MDC \leq Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
- 3.0 Requirements for SK, DU, and QC per section D.
- I. All Requested analyses performed on all samples? X_Yes ____No
- II. Resolution of Sample Processing/Missing Analytes comments:
 SW-5 initially analyzed using the Total Metals container; correct container used for

Reanalysis performed 6/24/21

III. Resolution of Sample Processing/Missing Analytes comments: See II. above

IV. Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):
 See attached checklist for details; sample results qualified non-detect (U) or estimated (J+) based on method blank contamination

V. Data verification calculation sheets are attached(at least one calculation per batch) NA

Reviewer_Julii Rinaroi Date_June 28, 2021

ISFSI Environmental, Safety and Health	ES-4	
	Rev. 1	

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

Sample ID	Analysis Date	Sample Designator (Note 1)	All Scheduled Analyses Performed?	Sample Processing Comments?	Units Correct?	Assessment Criteria (Note 2) (Note 3)
CFW-1	6/2/21	FS	Yes	O.K.	Yes	See attached checklist
CFW-5	6/2/21	FS	Yes	O.K.	Yes	See attached checklist
CFW-5 DUP	6/2/21	DU (Field)	Yes	O.K.	Yes	See attached checklist
SW-1	6/2/21	FS	Yes	O.K.	Yes	See attached checklist
SW-4	6/2/21	FS	Yes	O.K.	Yes	See attached checklist
SW-5	6/2/21	FS	Yes	O.K.	Yes	See attached checklist
CFW-6	6/2/21	FS	Yes	O.K.	Yes	See attached checklist
Laboratory QC						
QC1204830167	6/2/21	QC	Yes	O.K.	Yes	See attached checklist
QC1204830168	6/2/21	DU	Yes	O.K.	Yes	See attached checklist
QC1204830169	6/2/21	SK	Yes	O.K.	Yes	See attached checklist

Alkalinity

- 1.0 FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
- 2.0 Reported MDC \leq Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
- 3.0 Requirements for SK, DU, and QC per section D.
- I. All Requested analyses performed on all samples? X_Yes No
- II. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes.
- III. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes.
- IV. Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):See attached checklist for details; no sample qualifications required.
- V. Data verification calculation sheets are attached(at least one calculation per batch) NA

Julie Rinandi Reviewer Date June 21, 2021

ISFSI Environmental, Safety and Health	ES-4
	Rev. 1

ATTACHMENT C

ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

Sample ID	Analysis Date	Sample Designator (Note 1)	All Scheduled Analyses Performed?	Sample Processing Comments?	Units Correct?	Assessment Criteria (Note 2) (Note 3)
CFW-1	5/25/21	FS	Yes	O.K.	Yes	See attached checklist
CFW-5	5/25/21	FS	Yes	O.K.	Yes	See attached checklist
CFW-5 DUP	5/25/21	DU (Field)	Yes	O.K.	Yes	See attached checklist
SW-1	6/11/21	FS	Yes	O.K.	Yes	See attached checklist
SW-4	6/11/21	FS	Yes	O.K.	Yes	See attached checklist
SW-5	6/11/21	FS	Yes	O.K.	Yes	See attached checklist
CFW-6	5/25/21	FS	Yes	O.K.	Yes	See attached checklist
Laboratory QC						
QC1204828319	5/25/21	BL	Yes	O.K.	Yes	See attached checklist
QC1204840419	6/11/21	BL	Yes	O.K.	Yes	See attached checklist
QC1204828320	5/25/21	QC	Yes	O.K.	Yes	See attached checklist
QC1204840420	6/11/21	QC	Yes	O.K.	Yes	See attached checklist
QC1204828321	5/25/21	DU	Yes	O.K.	Yes	See attached checklist
QC1204840421	6/11/21	DU	Yes	O.K.	Yes	See attached checklist
QC1204828322	5/25/21	SK	Yes	O.K.	Yes	See attached checklist
QC1204840422	6/11/21	SK	Yes	O.K.	Yes	See attached checklist

Chemical Oxygen Demand (COD)

- 1.0 FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
- 2.0 Reported MDC \leq Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
- 3.0 Requirements for SK, DU, and QC per section D.
- I. All Requested analyses performed on all samples? X_Yes ____No
- II. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes.
- III. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes.
- IV. Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):See attached checklist for details; no sample qualifications required.

ISFSI Environmental, Safety and Health	ES-4
	Rev. 1

Data verification calculation sheets are attached(at least one calculation per batch) NA V.

Reviewer_____ Date__June 21, 2021

ISFSI Environmental, Safety and Health	ES-4
	Rev. 1

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

Gamma Spec

Sample ID	Analysis Date	Sample Designator (Note 1)	All Scheduled Analyses Performed?	Sample Processing Comments?	Units Correct?	Assessment Criteria (Note 2) (Note 3)
SP-1	6/1/21	FS	Yes	0.K.	Yes	See attached checklist
Laboratory QC						
QC1204833549	6/1/21	BL	Yes	0.K.	Yes	See attached checklist
QC1204833551	6/2/21	QC	Yes	0.K.	Yes	See attached checklist
QC1204833550	6/2/21	DU	Yes	O.K.	Yes	See attached checklist

NOTE

- 1.0 FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
- 2.0 Reported MDC \leq Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
- 3.0 Requirements for SK, DU, and QC per section D.

I. All Requested analyses performed on all samples? X_Yes No

- II. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes.
- III. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes.
- IV. Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):See attached checklist for details; no sample qualifications required.
- V. Data verification calculation sheets are attached(at least one calculation per batch) NA

Julie Rinandi Reviewer Date June 21, 2021

ISFSI Environmental, Safety and Health	ES-4
	Rev. 1

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

Strontium-90

Sample ID	Analysis Date	Sample Designator (Note 1)	All Scheduled Analyses Performed?	Sample Processing Comments?	Units Correct?	Assessment Criteria (Note 2) (Note 3)
SP-1	6/8/21	FS	Yes	0.K.	Yes	See attached checklist
Laboratory QC						
QC1204832895	6/8/21	BL	Yes	0.K.	Yes	See attached checklist
QC1204832899	6/8/21	QC	Yes	0.K.	Yes	See attached checklist
QC1204832897	6/8/21	DU	Yes	O.K.	Yes	See attached checklist
QC1204832898	6/8/21	SK	Yes	0.K.	Yes	See attached checklist

NOTE

- 1.0 FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
- 2.0 Reported MDC \leq Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
- 3.0 Requirements for SK, DU, and QC per section D.

I. All Requested analyses performed on all samples? X_Yes No

- II. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes.
- III. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes.
- IV. Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):See attached checklist for details; no sample qualifications required.
- V. Data verification calculation sheets are attached(at least one calculation per batch) NA

Reviewer_____ Date___June 21, 2021

ISFSI Environmental, Safety and Health	ES-4
	Rev. 1

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

Sample ID	Analysis	Sample	All Scheduled	Sample	Units	Assessment Criteria	
-	Date	Designator	Analyses	Processing	Correct?	(Note 2) (Note 3)	
		(Note 1)	Performed?	Comments?			
MW-105B	6/14/21	FS	Yes	O.K.	Yes	See attached checklist	
MW-107C	6/14/21	FS	Yes	O.K.	Yes	See attached checklist	
SP-1	6/14/21	FS	Yes	O.K.	Yes	See attached checklist	
Laboratory QC							
QC1204840927	6/14/21	BL	Yes	O.K.	Yes	See attached checklist	
QC1204840930	6/14/21	QC	Yes	O.K.	Yes	See attached checklist	
QC1204840928	6/14/21	DU	Yes	O.K.	Yes	See attached checklist	
QC1204840929	6/14/21	SK	Yes	O.K.	Yes	See attached checklist	

Tritium

NOTE

- 1.0 FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
- 2.0 Reported MDC ≤ Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.

3.0 Requirements for SK, DU, and QC per section D.

All Requested analyses performed on all samples? X Yes No I.

- Resolution of Sample Processing/Missing Analytes comments: II. No processing issues or missing analytes.
- III. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes.
- IV. Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above): See attached checklist for details; no sample qualifications required.
- V. Data verification calculation sheets are attached(at least one calculation per batch) NA

Julie Rinanoi Reviewer Date June 21, 2021

ATTACHMENT D

REVIEW OF CHAIN OF CUSTODY AND SAMPLE DOCUMENTATION (SAMPLE)

	Sampling Event I	Date(s)	5/19/2	1 - 5/20/2	1	Shipment	Date	5/20/21	
	Wells Sampled in CFW-1 CFW-5 CFW-5 DUP	this Batc CFW-6 MW-105B MW-107C	ch:	SP-1 SW-1 SW-4		SW-5 TB-009			
I.	All samples is	dentified	on CO	C forms?		X Yes	No		
II.	Samples obta	ined mate	h those	e required	by sai	npling pla	_ in?	X Yes	No
III.	Verification of	funbrok	en chai	n of custo	dy for	samples?		X Yes	No
IV.	Samples recei	ived intac	t by lal	boratory?		X Yes	No		
V.	Sample flush acceptable?	volumes X Ye	and flo es	w parame No	ters co	onsistent v	vith his	torical data	and
VI.	Sample non-r X Yes	adiologic No	al para	meters con	nsister	nt with his	torical	data and ac	ceptable?
VI	. All preservati	ve and co	ontaine	r requirem	ents n	net?	X Yes	No	
VI	II. Samples obta	ined mate	h those	e required	by sai	npling pla	an?	X Yes	No
IX.	Evaluation fo if resample v	r acceptir vill be do	ng samj ne prio	ple for any r to shipm	v quest lent):	tions I – V	/III ans	wered "NO	" (indicate

Charles R Staples

Reviewer _____ Date____

6/18/21

Page 18 of 39

ATTACHMENT E YANKEE NUCLEAR POWER STATION SITE CHARACTERIZATION QUALITY ASSURANCE PROGRAM PLAN FOR SAMPLE DATA QUALITY (SAMPLE)

Identify analytes individually.

Sample Analyte Date Reject, Resample or BriefDescription Reanalyze

NO SAMPLE RESULTS WERE REJECTED FOR THE MAY 2021 SAMPLING EVENT

I. Identify the specific reason for rejection of sample result, resample or reanalysis requirements (this should include a description of why the data point for that analyte man/may not be omitted):

NA

IL Are other analytes from this sample affected? Explain.

NA

III. Are changes to the procedures for sampling, preservation, transport, analysis or assessment required? Explain specific changes.

NA

Reviwer:

Julie Rinandi

Date: June 28, 2021

Page 19 of 39

ES-4 Rev. 1

Yankee Rowe May 2021 SDG 545280 Chemist Review	Fraction D	D	Ν	Ν	Ν	Ν	Ν
	Method SW6020 Analytical	SW7470A	E410.4	E901.1 Gamma	E905.0	E906.0	SM2320B
QC Parameter	Parameter ICP Metals	s Mercury	COD	Spec	Strontium	Tritium	Alkalinity
Case Narrative and Data Package Completeness	Х	х	х	х	Х	х	х
Holding Time and Sample Preservation/Collection	Х	-1	х	х	х	Х	х
QC Blanks	Х	-2	х	х	х	Х	х
Laboratory Control Samples	Х	х	х	х	х	Х	х
Field Duplicate Precision	NA	NA	х	NA	NA	NA	х
Laboratory Duplicate Precision	NA	NA	X (3)	х	х	Х	(4)
Matrix Spike Results	NA	NA	X (3)	NA	х	Х	(4)
Surrogate Recovery	NA	NA	NA	NA	NA	NA	NA
Tracer Recovery	NA	NA	NA	NA	Х	NA	NA

(1) SW-5 mercury prepped and analyzed after expiration of HT

(2) Mercury method blank = 0.000187 J mg/L; SP-1, SW-1, SW-4 <RL qualified U at RL

(3) COD MS and lab dup performed on SW-1, not COC-specified CFW-5

(4) Alkalinity MS and lab dup performed on non-client sample, not COC-specified CFW-5

(5) Metals MS/MSD performed on CFW-6, not COC-specified CFW-5

NOTE: Lab incorrectly analyzed a subset of metals as dissolved when they should have

been total; and analyzed a subset of metals as total that should have been dissolved;

reanalyses completed 6/23-6/24/21 and report reissued.

Yankee Rowe May 2021 SDG 545280 Chemist Review	Fraction N	N SW8270E	Т
	Method SW8260D Analytical	SIM	SW6020
QC Parameter	Parameter VOCs	1,4-Dioxane	Ca, Fe, Mn
Case Narrative and Data Package Completeness	Х	Х	х
Holding Time and Sample Preservation/Collection	Х	Х	х
QC Blanks	Х	Х	х
Laboratory Control Samples	Х	Х	х
Field Duplicate Precision	NA	NA	х
Laboratory Duplicate Precision	NA	NA	NA
Matrix Spike Results	NA	NA	X (5)
Surrogate Recovery	Х	х	NA
Tracer Recovery	NA	NA	NA

(1) SW-5 mercury prepped and analyzed after expiration of HT

(2) Mercury method blank = 0.000187 J mg/L; SP-1, SW-1, SW-4 <RL qualifi

(3) COD MS and lab dup performed on SW-1, not COC-specified CFW-5

(4) Alkalinity MS and lab dup performed on non-client sample, not COC-spe

(5) Metals MS/MSD performed on CFW-6, not COC-specified CFW-5

NOTE: Lab incorrectly analyzed a subset of metals as dissolved when they s been total; and analyzed a subset of metals as total that should have been reanalyses completed 6/23-6/24/21 and report reissued.

Yankee Rowe May 2021 SDG 545280 Chemist Review	Fraction D	D	Ν	Ν	Ν	Ν	Ν
	Method SW6020 Analytical	SW7470A	E410.4	E901.1 Gamma	E905.0	E906.0	SM2320B
QC Parameter	Parameter ICP Metals	Mercury	COD	Spec	Strontium	Tritium	Alkalinity
Case Narrative and Data Package Completeness	Х	Х	Х	Х	Х	х	Х
Holding Time and Sample Preservation/Collection	Х	х	х	х	Х	х	Х
QC Blanks	Х	(1)	х	х	Х	х	Х
Laboratory Control Samples	Х	х	х	х	х	х	Х
Field Duplicate Precision	NA	NA	х	NA	NA	NA	Х
Laboratory Duplicate Precision	NA	NA	X (2)	х	х	х	(3)
Matrix Spike Results	NA	NA	X (2)	NA	х	х	(3)
Surrogate Recovery	NA	NA	NA	NA	NA	NA	NA
Tracer Recovery	NA	NA	NA	NA	х	NA	NA

(1) Mercury method blank = 0.000187 J mg/L; sample results <RL qualified U at RL; sample results > RL but <2X blank value qualified J+

(2) COD MS and lab dup performed on SW-1, not COC-specified CFW-5

(3) Alkalinity MS and lab dup performed on non-client sample, not COC-specified CFW-5

(4) Metals MS/MSD performed on CFW-6, not COC-specified CFW-5

Yankee Rowe May 2021 SDG 545280 Chemist Review	Fraction N	N SW8270E	Т
	Method SW8260D Analytical	SIM	SW6020
QC Parameter	Parameter VOCs	1,4-Dioxane	Ca, Fe, Mn
Case Narrative and Data Package Completeness	Х	Х	х
Holding Time and Sample Preservation/Collection	Х	Х	Х
QC Blanks	Х	х	х
Laboratory Control Samples	Х	х	х
Field Duplicate Precision	NA	NA	х
Laboratory Duplicate Precision	NA	NA	NA
Matrix Spike Results	NA	NA	X (4)
Surrogate Recovery	Х	х	NA
Tracer Recovery	NA	NA	NA

(1) Mercury method blank = 0.000187 J mg/L; sample results <RL qualified

(2) COD MS and lab dup performed on SW-1, not COC-specified CFW-5

(3) Alkalinity MS and lab dup performed on non-client sample, not COC-spe

(4) Metals MS/MSD performed on CFW-6, not COC-specified CFW-5

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder:	545280										Page 4 of 23
Parmname		NON	1	Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Metals Analysis - I Batch 2	ICPMS 132799										
Calcium				10200		1950	ug/L	4.37		(0%-20%) BAJ	06/04/21 05:15
Chromium			U	ND	U	ND	ug/L	N/A		(0%-20%)	06/04/21 11:56
Iron				3410		660	ug/L	3.41		(0%-20%)	06/04/21 05:15
Lead			U	ND	U	ND	ug/L	N/A		(0%-20%)	
Manganese				86.9		16.3	ug/L	6.28		(0%-20%)	06/04/21 12:03
Selenium			U	ND	U	ND	ug/L	N/A		(0%-20%)	06/04/21 05:15
Silver			U	ND	U	ND	ug/L	N/A		(0%-20%)	
Metals Analysis-M Batch 2	lercury 138689 ——										
QC1204842290 Mercury	0 545241007 DUP		J	0.000169	J	0.000157	mg/L	7.36 ^		(+/-0.000200) MTM1	06/15/21 11:20
QC1204842289 Mercury	9 LCS	0.00200				0.00206	mg/L		103	(80%-120%)	06/15/21 11:10
QC1204842288	MB U SAI	nples <	RL	; J+ > R	L an	d <u>< 10x</u> I	olank c	oncentr	ation		
Mercury					J	0.000187	mg/L	jar	2 6/	21/21	06/15/21 11:08
QC120484229 Mercury	1 545241007 MS	0.00200	J	0.000169		0.00200	mg/L		91.7	(75%-125%)	06/15/21 11:25
QC1204842292 Mercury	2 545241007 SDILT		J	0.169	J	0.106	ug/L	214		(0%-10%)	06/15/21 11:27

Page: 2 of 2 Devisor # 2212976117 200		× 40×0							GEL	Laborat	ories, LL(2
GEL Ouote #:		Nadu		رام المراجع ال محمد المراجع ال	لامتلقهم الأمصطار	6) a. c.			2040 Char	Savage	Road	KUCJ VN
COC Number ⁽¹⁾ :		ody and An	alytical F	eques	tany wasa)	147.02 1			Phon	e: (843) e: (843)	556-8171	2220
NPO Number:	GEL Work Order Number: GE	3L Project Ma	mager:						Fax:	(843) 76	6-1178	
Client Name: WOOD E+IS	Phone #207-775	1925-		Sample	Analys	dis Requ	ested ⁽⁵	(Fill i	n the m	unber o	f contain	ers for each test)
Project/Site Name: YANKEE ROW	リE、MA、 Fax#		Should this	81			574		2		22	 Preservative Type (6)
Address: 571 CONGRESS ST.	PORTLAND, ME, OYIGI		sample be considered:	oniati	0	NU	0,23	14	Edg	261		
Collected By: RA, DL, JM	Send Results To: GIENE SHEPHA.	<i>Ω</i> Ω [≡	Ajdd	t of con	578 778	15	LHL RWS		5 40		02	Comments Note: extra sample is
Sample ID	*Time *Date Collected Collected Of Military) OC Fiel	d Sample is sample	io unondi () se origination ne oscala () se origination ne oscala () se oscala () s	əqiunu teto	50/00	5478 5478	10203	1 0 .) 14×76	00089	TN 29	L 02844	required for sample specific QC
CFW-1	5/20/21 0950 N N	1 (((() () () () () () () ()		1 m	2	$ \times$		' × ′ ×	>	222	?	
SP-1	5/20/21 0825 N Y	SW	N N	A	î X		X	<u>\</u>	X	X	X	
SW-1	5/20/21 1010 N Y	/ SW	N N	0	$\hat{\mathbf{X}}$	トレ	X	X	<u> </u>			
SW-4	5/20/21 1035 N Y	1 5N	NN	19	í) X	$\frac{\times}{\times}$	X					
SW-S	5/20/21 1100 N Y	1 5W	N N	6	$\frac{1}{\lambda}$	$\frac{\lambda}{\lambda}$	X	$\frac{X}{X}$				
TB-009	5/20/21 0810 TB A	1 00 1	$\sim \sim$	3	X							
	on ot sa	D:										
	ily hei m]											
	th r a ole											
Cha	in of Custody Signatures B			TATR	equestee	I: Nori	nal: X	Rush		Specify		(Subject to Surchage)
Relinquished By (Signed) Date Time	Received by (signate ADate Date Date C	he	Fax]	cesults:] Yes	NY N						
Rene Aule 5/20/21)	8 R 18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	21-21 0	750 Selec	t Deliver	able: []	C of A	[] QC 8	ummar	101	evel 1	[] Level	2 [] Level 3 [] Level 4
2	W W S S		Addi	ional Rei	marks: J	NE2N	ERA	BLE	8 N N	SEE	QUY	STE
3			For	Lab Rece	iving Us	e Only: (Custody.	Seal Into	ict? []	Yes [] No - C	ooler Temp:C
> For sample shipping and delivery details, see San	uple Receipt & Review Jorm H.R.) 😦 🔂	<u>Sa</u>	unple Collec	áon Tim.	2 Zone :	M faste	m []	Pacific	[]C	entral	I] Mou	ntain [] Other:
 Chain of Custody Number = Client Determined OC Codes: N = Normal Samole. TB = Trin Blank FD = Fiel 	als very series and the series of the series	CD - Matric Call	Durline Co	C.	2							
 Field Filtered: For liquid matrices, indicate with a - Y - for y. 	es the sample was field filtered or - : Out sample was not filtered or - : Out sample was not field filtered or - : Out sample was not field filtered or - : Out sample was not filtered or -	.p	v pupurate pa	mpre, o - o	uau, C - J	ausodino						
4.) Matrix Codes: DW=Drinking Water, GW=Groundwater, SW	/=Surface Water, WW=Waste Water W=Vater View	SO=Soil, SD=Sed	liment, SL=Slu	lge, SS=So	lid Waste,	0≂0il, F≃l	ilter, P=N	'ipe, U=U	rîne, F=Fq	ecal, N=N	asal	
 Sample Analysis Requested: Analytical method requested (i. Presentation Trans. H4 - Hydrochloric Anid XI = Mitric Anid 	e. 8260B, 6010B/7470A) and number of contacts is provided for card	n (i.e. <i>8260B</i> - 3, 1	6010B/7470A	1).								
7) KNOWN OR POSSIBLE HAZARDS	u, an - acumin nyuromos, an - anjust acutom - acordic Ari Characteristic Harards [1] ist Was 2	la, n.A = riexane, 2	1 mulos = 10	nosultate,	f no presei	vative is ad	ded = leav	e field bla	nk			
RCRA Metals As = Arsenic Hg= Mercury	FL = Flammable/Ignitable LWTisted Anste CO = Corrosive (F. KP and Ellisted RE = Reactive	astes.)	10 (i, e.: 10	Other/L High/low Loothe L	Jinknown PH, asb	estos, bei	yllium, i	rritants,	other	<u> </u>	lease pro dow rega mcerns.	vide any additional details rding handling and/or disposai (i.e.: Origin of sample(s), type
Ba = Barium Se= Selenium Cd = Cadmium Ao= Silver	ed 1		Desc	iption:	3 5	}				<u>5</u> .	2110 2011	cuea Jrom, vau mairices, etc.)
Cr = Chromium MR=Misc. RCRA metals Pb = Lead	PCB = Polychlorinated biphenyls											
	[

Page 53 of 64 SDG: 545280