# YANKEE ATOMIC ELECTRIC COMPANY



49 Yankee Road, Rowe, Massachusetts 01367

April 13, 2010 BYR 2010-012

Dave Howland Department of Environmental Protection Western Regional Office 436 Dwight Street Springfield, MA 01103

Subject: Post-Closure Maintenance and Monitoring Report

This letter serves as the Post-Closure Maintenance and Monitoring Report that documents the results of the monitoring required by the Massachusetts Department of Environmental Protection (DEP), as documented in the "Filed" Deed Notices for the Southeast Construction Fill Area (SCFA) and the Beneficial Use Determination (BUD) Area and the SCFA Closure Certification Report Financial Assurance Mechanism review. This report documents the results of the following post-closure monitoring:

- Groundwater Monitoring (Documented in Attachment 1)
- Surface Water Monitoring (Documented in Attachment 1)
- Soil Stability Monitoring Settlement, Cracks and Erosion and Vegetative Cover (Documented in Attachment 2)
- Southeast construction Fill Area (SCFA) Financial Assurance Mechanism (FAM) Review (Documented in Attachment 3)

Should you require additional information please contact me at 413-424-5261 Extension 303.

Sincerely,

YANKEE ATOMIC ELECTRIC CO

M. Mitchell Robert Mitchell

ISFSI Manager

c w/encl.:

E. Waterman, US Environmental Protection Agency, Region 1
R. Gallagher, Director, MA DPH
L. Hanson, MA DEP
CAN Business Office
Public Repository at the Greenfield Community College
Franklin Regional Council of Governments (FRCOG)

## Attachment 1

Post-Closure Groundwater and Surface Water Monitoring

## POST CLOSURE GROUNDWATER AND SURFACE WATER MONITORING REPORT, SPRING 2010

## **YANKEE NUCLEAR POWER STATION**

Prepared for: Yankee Atomic Electric Company Yankee Nuclear Power Station 49 Yankee Road Rowe, Massachusetts

Prepared by: MACTEC Engineering and Consulting, Inc. 511 Congress Street Portland, Maine 04101

April 2010

Project No. 3617087152



## Post Closure Groundwater and Surface Water Monitoring Report, Spring 2010 Yankee Nuclear Power Station

**Prepared for:** 

Yankee Atomic Electric Company Yankee Nuclear Power Station 49 Yankee Road Rowe, Massachusetts

**Prepared by:** 

MACTEC Engineering and Consulting, Inc. 511 Congress Street Portland, Maine 04101

April 14, 2010

Project Number 3617087152

## Post Closure Groundwater and Surface Water Monitoring Report, Spring 2010 Yankee Nuclear Power Station

Prepared for:

Yankee Atomic Electric Company Yankee Nuclear Power Station 49 Yankee Road Rowe, Massachusetts

Prepared by:

MACTEC Engineering and Consulting, Inc. 511 Congress Street Portland, Maine 04101

April 14, 2010

Project Number 3617087152

Kerry Tull, L.S.P. Senior Principal

Eugene Shephard Senior Project Manager

## **TABLE OF CONTENTS**

| 1.0 | INTRODUCTION            | .1 |
|-----|-------------------------|----|
| 2.0 | BACKGROUND              | .1 |
| 3.0 | SCOPE OF WORK           | .2 |
| 4.0 | FINDINGS                | .2 |
| 4.1 | RADIOLOGICAL PARAMETERS | .2 |
| 4.2 | CHEMICAL PARAMETERS     | .3 |
| 5.0 | CONCLUSIONS             | .4 |
| 6.0 | RECOMMENDATIONS         | .5 |
| 7.0 | ACRONYMS                | .6 |
| 8.0 | REFERENCES              | .7 |

APPENDIX A FIELD DATA RECORDS

| APPENDIX B  | ANALYTICAL DATA – MARCH 2010 |
|-------------|------------------------------|
| APPENDIX B- | -1 RADIOLOGICAL DATA         |
| APPENDIX B- | -2 CHEMICAL DATA             |
| APPENDIX B- | -3 VALIDATION CHECKLISTS     |

## **List of Figures**

Figure 1 Sample Locations

## List of Tables

- Table 1Groundwater Monitoring Program Summary
- Table 2Field Parameter Measurements
- Table 3Summary of Tritium Analytical Data and Trend Analyses
- Table 4Summary of Arsenic in Monitoring Well MW-101A
- Table 5
   Summary of Chemical Data from SCFA Monitoring Wells
- Table 6
   Summary of Chemical Data for SCFA Surface Water Locations

## **1.0 INTRODUCTION**

MACTEC Engineering and Consulting, Inc. (MACTEC) has been contracted by Yankee Nuclear Power Station (YNPS) to conduct the Post Closure Groundwater and Surface Water Monitoring Program at their site, located at 49 Yankee Road in Rowe, Massachusetts.

YNPS completed its decommissioning in 2007, under the oversight of the Nuclear Regulatory Commission (NRC). However, as part of the closure process, ongoing groundwater and surface water monitoring is still required under the Massachusetts Department of Environmental Protection (MassDEP). This work is to demonstrate that the groundwater is in compliance with the Massachusetts Contingency Plan (MCP) and for post closure monitoring of the Beneficial Use Determination (BUD) Area and the Southeast Construction Fill Area (SCFA). This report presents the findings from samples collected in March 2010 in support of the site closure requirements under the MCP.

### 2.0 BACKGROUND

Through the site closure process, a comprehensive investigation was conducted to characterize environmental conditions and to develop the conceptual site model, not only to identify source areas and impacted media, but to also describe the fate and transport of both chemicals and radionuclides in soils, groundwater, and surface water. These findings have been published in numerous reports and have achieved the appropriate regulatory approvals. The conceptual site model for groundwater at YNPS was published in the Final Groundwater Conditions Report, submitted to the NRC on February 15, 2007 (YNPS, 2007).

As part of the decommissioning project, 81 groundwater monitoring wells were installed to characterize the hydrogeology, and groundwater quality. Currently there are 58 wells that remain on site. Of these wells, 12 groundwater monitoring wells were sampled in March 2010 to demonstrate compliance with the MCP and to support post closure monitoring.

### **3.0 SCOPE OF WORK**

Groundwater monitoring for closure under the License Termination Plan (LTP) has been completed. However, groundwater and surface water monitoring is still required to reach closure under the MassDEP and to support post closure monitoring. In keeping with this goal this program was completed in accordance with the MassDEP-approved Groundwater Monitoring Plan to Support Closure under the MCP (ERM, 2007) as well as the Phase II - Comprehensive Site Assessment Report (MassDEP, April 08, 2009).

The sampling program included the sampling of 12 groundwater monitoring wells and nine surface water sample locations. The sampling program is summarized in Table 1. The sampling locations are shown on Figure 1. All groundwater samples were collected in accordance with Low Stress (Low Flow) Purging and Sampling guidance (USEPA, 1996a) and in accordance with the Health and Safety Plan (MACTEC, 2006). Field data records are presented in Appendix A, and a summary of the field data parameters is presented in Table 2.

The radiochemistry data were validated in accordance with Site procedure RP-05, Rev. 3 (YNPS, 2009). Chemical analytical data were validated in accordance with EPA Region 1, New England Validation Guidelines (USEPA, 1989 and 1996b). A summary of the data validation findings and tabulated validated data are provided in Appendix B-1 (radiological), B-2 (chemical), and B-3 (validation checklists).

## 4.0 FINDINGS

Groundwater samples were submitted for both radiological and chemical parameters. The results and findings from the sampling events are presented in the following subsections.

## 4.1 RADIOLOGICAL PARAMETERS

Radionuclides in groundwater are compared to the United States Environmental Protection Agency's (USEPA's) Maximum Contaminant Level (MCL). In additional to these criteria, data are also evaluated over time to assess if trends are decreasing, stable, or increasing. Consistent with evaluations presented in previous Annual Post Closure Groundwater and Surface Water Monitoring Reports, a change of 15 percent over previous sampling events has been used to identify trends.

Groundwater samples were collected from 10 monitoring wells and seven surface water locations for analysis of radionuclides. Consistent with previous events, tritium was the only radionuclide positively identified in groundwater. The tritium results from the March 2010 sampling event are presented on Table 3 with previous data to demonstrate that there continues to be a generally downward and/or stable trend in tritium concentrations. Radionuclides were not detected in any of the surface water locations sampled during this event.

Consistent with historical results, the highest concentration of tritium was detected at MW-107C at 20,100 picocuries per liter (pCi/L), with the next highest detection reported at monitoring well MW-107F (8,940 pCi/L). The MCL for tritium is 20,000 pCi/L. As shown on Table 3, these detections are consistent with the conceptual site model; tritium remains elevated at a few locations; however, the concentrations are generally trending downward.

## 4.2 CHEMICAL PARAMETERS

Groundwater chemical data are evaluated using the GW-1 groundwater standards (310 CMR 40.0974(2)) (MassDEP, 2008). For the analyses where GW-1 standards are not published, data are compared to Massachusetts MCLs or Massachusetts Secondary MCLs (SMCLs) (MassDEP, 2007). Surface water chemical data are evaluated using USEPA Ambient Water Quality Criteria (AWQC) (USEPA, 2002). For the analyses where AWQC are not published, data are compared to Massachusetts MCLs or SMCLs (MassDEP, 2007).

<u>Former Industrial Area.</u> One monitoring well (MW-101A) is sampled for only arsenic as part of the monitoring program and is located in the Former Industrial Area. Arsenic was not detected at MW-101A. A summary of arsenic data from monitoring well MW-101A, including previous sampling events, is presented on Table 4.

<u>Former Southeast Construction Fill Area.</u> Samples were collected from three groundwater monitoring wells (CFW-1, CFW-5, and CFW-6) and five surface water locations (SW-1 through SW-5) to assess the potential environmental impacts from the Former SCFA. A summary of the sampling program is presented in Table 1.

No volatile organic compounds (VOCs) were detected in any of the groundwater or surface water samples. Several metals and other naturally occurring compounds were detected in both groundwater and surface water samples; however the concentrations are consistent with background and historic data. Only iron and manganese were detected at concentrations that exceed the SMCLs. SMCLs are used to assess the aesthetic qualities of drinking water and are not health-based standards; concentrations that exceed SMCLs are not necessarily indicative of potential health risks.

A summary of the groundwater data for wells downgradient of the SCFA is presented on Table 5. A summary of the surface water data for locations associated with the SCFA is presented in Table 6.

<u>Sherman Spring.</u> Sampling was completed at the Sherman Spring surface water location (SP-1) and samples were analyzed for VOCs and total Resource Conservation and Recovery Act (RCRA) 8 metals plus thallium. Barium was detected well below applicable criteria. All other results were reported as not detected. Validated data is included in Appendix B-2.

<u>Sherman Reservoir</u>. Sampling was completed at the Sherman Reservoir surface water location (SW-011) and samples were analyzed for dissolved RCRA 8 metals. Barium was detected below applicable criteria. All other results were reported as not detected. Validated data is included in Appendix B-2.

<u>Background Location</u>. Background sampling was completed at the location where the Deerfield River enters the Sherman Reservoir (SW-408) and samples were analyzed for dissolved RCRA 8 metals. Barium was detected below applicable criteria. All other results were reported as not detected. Validated data is included in Appendix B-2.

## 5.0 CONCLUSIONS

The results from the March 2010 groundwater sampling event were consistent with the approved conceptual site model. No additional sampling is warranted at this time. In accordance with the Post Closure Groundwater and Surface Water Monitoring Plan, the next groundwater sampling event is scheduled for March 2012.

Based on the data collected during the March 2010 sampling event, tritium continues to be the only site related radionuclide impacting groundwater and/or surface water at YNPS. Tritium concentrations continue to be stable or decreasing across the site, with the highest concentration reported at MW-107C at an activity of 20,100 pCi/L compared to the MCL of 20,000 pCi/L.

Arsenic was not detected at MW-101A. In accordance with the Groundwater Monitoring Plan, samples must be collected from MW-101A annually for four consecutive years or until there are two consecutive rounds of data that are below the GW-1 standard of 0.01 milligrams per liter (mg/L). Based on the data presented in Table 4, sampling may be discontinued at MW-101A.

## 6.0 **RECOMMENDATIONS**

As the groundwater monitoring program is progressing, wells that are no longer part of the active network may also be abandoned at this time. Following the March 2010 sampling event, there are 51 monitoring wells that are no longer sampled and ready for abandonment. This action is recommended to eliminate the conduit for storm water runoff to potentially reach the water table.

## 7.0 ACRONYMS

| AWQC    | Ambient Water Quality Criteria                       |
|---------|------------------------------------------------------|
| BUD     | Beneficial Use Determination                         |
| LTP     | License Termination Plan                             |
| MACTEC  | MACTEC Engineering and Consulting Services, Inc.     |
| MassDEP | Massachusetts Department of Environmental Protection |
| MCL     | Maximum Contaminant Level                            |
| MCP     | Massachusetts Contingency Plan                       |
| mg/L    | milligrams per liter                                 |
| NRC     | Nuclear Regulatory Commission                        |
| pCi/L   | picocuries per liter                                 |
| RCRA    | Resource Conservation and Recovery Act               |
| SCFA    | Southeast Construction Fill Area                     |
| SMCL    | Secondary Maximum Concentration Limit                |
| USEPA   | United States Environmental Protection Agency        |
| VOC     | volatile organic compound                            |
| YNPS    | Yankee Nuclear Power Station                         |
|         |                                                      |

### 8.0 **REFERENCES**

- ERM 2007. Groundwater Monitoring Plan to Support Closure under the Massachusetts Contingency Plan, Yankee Nuclear Power Station, Site Closure Project, Rowe, Massachusetts, June 2007.
- MACTEC, 2006. Health and Safety Plan, Yankee Nuclear Power Station, Rowe, Massachusetts, April 2006.
- MassDEP, 2007. Standards and Guidelines for Contaminants in Massachusetts Drinking Waters. Spring 2007. Department of Environmental Protection, Office of Research and Standards.
- MassDEP, 2008. Massachusetts Contingency Plan, 310 CMR 40.000. February 14, 2008.
- MassDEP, 2009. Phase II Comprehensive Site Assessment Report, April 8, 2009.
- USEPA, 1989. "Region I, Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses;" Hazardous Site Evaluation Division; February, 1989.
- USEPA, 1996a. Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Ground Water Monitoring Wells, July 1996.
- USEPA, 1996b. "Region I, EPA-New England Data Validation Functional Guidelines for Evaluating Environmental Analyses, Parts I and II," Quality Assurance Unit Staff; Office of Environmental Measurement and Evaluation; December, 1996.
- USEPA. 2002. Nationally Recommended Water Quality Criteria: 2002. Office of Water, Science and Technology. Doc. No. EPA-822-R-02-047
- YNPS, 2009. Groundwater Monitoring Program, RP-05, Rev. 3, ISFSI Radiation Protection, June 16, 2009.
- YNPS, 2007. Final Groundwater Conditions Report, Yankee Nuclear Power Station, Rowe, Massachusetts, February 15, 2007.

Figures



Tables

#### Table 1 Groundwater and Surface Water Monitoring Program Summary March 2010

#### Post Closure Groundwater and Surface Water Monitoring Report Spring 2010

Yankee Nuclear Power Station Rowe, Massachusetts

|       | <pre>4matrix, Mathematrix, Math</pre> |                 |                |            |          |      |      |           |                   |           |             |        | . /       |           |        |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|------------|----------|------|------|-----------|-------------------|-----------|-------------|--------|-----------|-----------|--------|
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | F              | / _<br>_   | <u>т</u> |      |      | т<br>Т    | <u>т</u>          | T         | <u>т</u>    | т<br>Т | / 9,<br>T |           | ,<br>1 |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | Pottle Size    | 1 40       | 500      | 500  | 500  | 500       | 1                 | 500       | 250         | 2      | 2         | 500       | 1      |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rot             | Bottle Size    | 40<br>mI   |          |      |      | 500<br>mI | Liter             | 500<br>mI | 250<br>mI   | Liter  | Liter     | 500<br>mI | 1      |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bo              | nttle Material | Glass Vial | Poly     | Poly | Poly | Poly      | Poly              | Poly      | Amber Glass | Poly   | Poly      | Poly      | 1      |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D               | Procorvativo   | HC1        | HNO3     | HNO3 | HNO3 | HNO3      | N <sub>2</sub> OH | 4 Deg C   | H2SO4       | HNO3   | HNO3      | None      | 1      |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | Lah ID         | NEL        | NEL.     | NEL. | NEL. | NEL.      | NEL               | NEL       | NEL.        | GEL    | GEL       | GEL       | 1      |
| Media | Loc Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Field Sample ID | OC Code        | TILL       |          | TILL | TILL | 1122      | TILL              | TILL .    | TILL .      | OLL    | OLL       | OLL       | 1      |
| GW    | CFW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CFW-1           | FS             | х          | х        |      |      |           | х                 | Х         | Х           |        |           |           | i.     |
| GW    | CFW-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CFW-5           | FS             | х          | х        |      |      |           | х                 | Х         | Х           |        |           |           | 1      |
| GW    | CFW-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CFW-5DUP        | FD             | х          | Х        |      |      |           | Х                 | Х         | Х           |        |           |           | 1      |
| GW    | CFW-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CFW-5MS         | MS             | х          | Х        |      |      |           | Х                 | Х         | Х           |        |           |           | i.     |
| GW    | CFW-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CFW-5MSD        | MSD            | Х          | Х        |      |      |           | Х                 | Х         | Х           |        |           |           | 1      |
| GW    | CFW-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CFW-6           | FS             | Х          | Х        |      |      |           | Х                 | Х         | Х           |        |           |           | 1      |
| GW    | MW-101A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-101A         | FS             |            |          |      |      | Х         |                   |           |             |        |           |           | i.     |
| GW    | MW-102D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-102D         | FS             |            |          |      |      |           |                   |           |             | Х      | Х         | Х         | 1      |
| GW    | MW-104A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-104A         | FS             |            |          |      |      |           |                   |           |             | Х      | Х         | Х         | 1      |
| GW    | MW-104A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-104ADUP      | FD             |            |          |      |      |           |                   |           |             | Х      | Х         | Х         | 1      |
| GW    | MW-104A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-104AMS       | MS             |            |          |      |      |           |                   |           |             | Х      | Х         | Х         | 1      |
| GW    | MW-104A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-104AMSD      | MSD            |            |          |      |      |           |                   |           |             | Х      | Х         | Х         | 1      |
| GW    | MW-105B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-105B         | FS             |            |          |      |      |           |                   |           |             | Х      | Х         | Х         | 1      |
| GW    | MW-106A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-106A         | FS             |            |          |      |      |           |                   |           |             | Х      | Х         | Х         | 1      |
| GW    | MW-107C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-107C         | FS             |            |          |      |      |           |                   |           |             | Х      | Х         | Х         | 1      |
| GW    | MW-107D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-107D         | FS             |            |          |      |      |           |                   |           |             | Х      | Х         | Х         | 1      |
| GW    | MW-107E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-107E         | FS             |            |          |      |      |           |                   |           |             | Х      | Х         | Х         | 1      |
| GW    | MW-107F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-107F         | FS             |            |          |      |      |           |                   |           |             | Х      | Х         | Х         | i.     |
| SW    | Monroe Dam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monroe Dam      | FS             |            |          |      |      |           |                   |           |             | Х      | Х         | Х         | 1      |
| SW    | SP-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SP-1            | FS             | Х          |          | Х    |      |           |                   |           |             | Х      | Х         | Х         | 1      |
| SW    | SW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-1            | FS             | Х          | Х        |      |      |           | Х                 | Х         | Х           |        |           |           | 1      |
| SW    | SW-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-2            | FS             | Х          | Х        |      |      |           | Х                 | Х         | Х           |        |           |           | i.     |
| SW    | SW-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-3            | FS             | Х          | Х        |      |      |           | Х                 | Х         | Х           |        |           | ļ         | 1      |
| SW    | SW-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-4            | FS             | Х          | Х        |      |      |           | Х                 | Х         | Х           |        |           |           | 1      |
| SW    | SW-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-5            | FS             | Х          | Х        |      |      |           | Х                 | Х         | Х           |        |           |           |        |
| SW    | SW-011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SW-011          | FS             |            |          |      | Х    |           |                   |           |             | Х      | X         | X         |        |
| SW    | SW-408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SW-408          | FS             |            |          |      | Х    |           |                   |           |             | Х      | X         | X         |        |
| QC    | EB-003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EB-003          | EB             |            |          |      |      |           |                   |           |             | Х      | X         | X         |        |
| QC    | TB-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TB-005          | TB             | X          |          |      |      |           |                   |           |             |        |           |           |        |
| QC    | TB-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TB-006          | TB             | X          |          |      |      |           |                   |           |             |        |           |           |        |
| TOTAI |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                | 14         | 11       | 1    | 2    | 1         | 11                | 11        | 11          | 16     | 16        | 16        | i.     |

Prepared/Date: MGV 03/04/10 Checked/Date: JRY 04/07/10

#### Table 1 Groundwater and Surface Water Monitoring Program Summary March 2010

### Post Closure Groundwater and Surface Water Monitoring Report Spring 2010 Yankee Nuclear Power Station

Rowe, Massachusetts

Notes:

Metals List 1 - RCRA 8 plus copper, iron, manganese, zinc, calcium, sodium

Metals List 2 - RCRA 8 plus thallium

<sup>1</sup> = Gamma isotopic includes: Co-60, Cs-134, Cs-137, Nb-94, Sb-125, Eu-152, Eu-154, Eu-155, Ag-108m

4 Deg C 4 Degrees Celsius

- COD chemical oxygen demand
- D Dissolved
- EB Equipment Blank
- FD Field Duplicate
- FS Field Sample
- GEL General Engineering Laboratories
- GPC Gross Proportional Counter
- GW Groundwater Sample
- H2SO4 Sulfuric Acid
- HCl Hydrochloric Acid
- HNO3 Nitric Acid
- LSC Liquid Scintillation Counter
- mL milliliter
- MS Matrix Spike
- MSD Matrix Spike Duplicate
- NaOH Sodium Hydroxide
- NEL Northeast Laboratories
- QC Quality Control
- RCRA Resource Conservation and Recovery Act
- SW Surface Water Sample
- T Total
- TB Trip Blank
- TDS Total Dissolved Solids
- TICs Tentatively Identified Compounds
- VOC volatile organic compound
- X indicates parameter scheduled for analysis.

### Table 2 **Field Parameter Measurements**

## Post Closure Groundwater and Surface Water Monitoring Report Spring 2010 **Yankee Nuclear Power Station Rowe, Massachusetts**

|                 | Parameter   | Conductivity | DO    | Eh   | pН   | Temperature    | Turbidity    |
|-----------------|-------------|--------------|-------|------|------|----------------|--------------|
|                 | Units       | µSiemens/cm  | mg/L  | mv   | S.U. | Deg C          | NTUs         |
| Field Sample ID | Sample Date |              |       |      |      |                |              |
| CFW-1           | 3/3/2010    | 95           | 11.0  | 220  | 5.0  | 6              | 28.9         |
| CFW-5           | 3/2/2010    | 440          | < 0.1 | -78  | 6.0  | 5              | 2.2          |
| CFW-6           | 3/2/2010    | 172          | 11.1  | 35   | 6.0  | 5              | 0.8          |
| Monroe Dam      | 3/3/2010    | 35           | 12.2  | 150  | 6.3  | 2              | 3.1          |
| MW-101A         | 3/3/2010    | 785          | 1.0   | 29   | 10.2 | 6              | 3.0          |
| MW-102D         | 3/4/2010    | 182          | 5.9   | -37  | 6.7  | 7              | 4.4          |
| MW-104A         | 3/2/2010    | 402          | < 0.1 | 120  | 6.0  | 9              | 1.1          |
| MW-105B         | 3/4/2010    | 534          | < 0.1 | -200 | 6.8  | 8              | 2.0          |
| MW-106A         | 3/4/2010    | 319          | < 0.1 | 90   | 5.8  | 7              | 2.4          |
| MW-107C         | 3/4/2010    | 355          | 4.2   | -68  | 6.5  | 8              | 2.6          |
| MW-107D         | 3/2/2010    | 344          | 4.1   | -120 | 6.7  | 8              | 3.8          |
| MW-107E         | 3/3/2010    | 199          | 3.8   | -110 | 6.8  | 7              | 1.0          |
| MW-107F         | 3/3/2010    | 233          | < 0.1 | -98  | 7.0  | 8              | 2.4          |
| SP-1            | 3/3/2010    | 344          | 17.5  | 180  | 5.9  | 6              | 4.4          |
| SW-1            | 3/3/2010    | 28           | 10.7  | 260  | 4.8  | 2              | 1.1          |
| SW-2            | 3/3/2010    | 27           | 15.0  | 91   | 6.3  | 1              | 4.1          |
| SW-3            | 3/3/2010    | 28           | 17.1  | 40   | 6.5  | 1              | 3.7          |
| SW-4            | 3/2/2010    | 28           | 13.9  | 51   | 6.5  | 1              | 3.4          |
| SW-5            | 3/2/2010    | 22           | 12.5  | 91   | 6.4  | 1              | 1.3          |
| SW-011          | 3/3/2010    | 37           | 9.2   | 150  | 7.8  | 1              | 2.1          |
| SW-408          | 3/3/2010    | 35           | 12.6  | 150  | 6.4  | 2              | 2.9          |
| Notes:          |             |              |       |      |      | Prepared/Date: | MGV 03/29/10 |

Checked/Date: JRY 04/07/10

Deg C - Degrees Celsius

DO - dissolved oxygen

Eh - oxidation/reduction potential

µSiemens/cm - microseimens per centimeter

mg/L - milligrams per liter

mv - millivolts

NTUs - Nephlemetric Units

S.U. - Standard Units

## Table 3 Summary of Tritium Analytical Data and Trend Analysis

### Post Closure Groundwater and Surface Water Monitoring Report Spring 2010 Yankee Nuclear Power Station Rowe, Massachusetts

|            | Aug-03 | Sep-03 | Nov-03 | Mar-04 | May-04 | Dec-06 | Mar-07    | Mar-08      | Mar-09  | Mar-10  | Trend          |
|------------|--------|--------|--------|--------|--------|--------|-----------|-------------|---------|---------|----------------|
| Location   | pCi/L     | pCi/L       | pCi/L   | pCi/L   | Analysis*      |
| CFW-5      | -      |        | -      |        | -      | -      | 392       | -           | -       |         |                |
| CFW-6      | -      |        | -      |        | -      | 581    | 4000/4210 | -           | 2440    |         |                |
| MW-102D    |        |        |        |        |        | 6530   | 8580      | 1590        | -       | -       | Decrease       |
| MW-104A    |        |        |        |        |        | 2850   | 3100/2930 | 1850        | 831/900 | 967/774 | Decrease       |
| MW-105B    | 4850   |        | 5220   | 4890   | 4530   | 2900   | 3440      | 4710        | 3490    | 3890    | Stable         |
| MW-106A    |        |        |        |        |        | 3010   | - /2850   | 846         | 484     | 530     | Stable         |
| MW-107C    |        | 48000  | 45780  | 8880   | 39020  | 29100  | 30900     | 25700       | 21300   | 20100   | Stable         |
| MW-107D    |        | 9150   | 9710   | 5940   | 10910  | 9310   | 9440      | 9380        | 8210    | 7280    | Stable         |
| MW-107E    |        |        |        |        |        | 5700   | 6420      | 5060 / 5160 | 4650    | 5470    | Stable         |
| MW-107F    |        |        |        |        |        | 9210   | 9220      | 9890        | 8150    | 8940    | Stable         |
| Monroe Dam |        |        |        |        |        |        |           |             | -       | -       | Not Applicable |
| SP-1       | -      |        | -      | 210    | 890    | 1100   | 452       | -           | -       | 244     | Stable         |
| SW-011     |        |        |        |        |        |        |           |             | -       | -       | Not Applicable |
| SW-408     |        |        |        |        |        |        |           |             | -       | -       | Not Applicable |

\* Trend analysis is based on a concentration change of greater than 15% from previous four events.

967/774 - shows sample and duplicate sample

"-" signifies concentration less than minimum detectable activity

pCi/L - picocuries per liter

Prepared/Date: MGV 04/02/10

Checked/Date: JRY 04/07/10

# Table 4 Summary of Arsenic Data at Monitoring Well MW-101A

## Post Closure Groundwater and Surface Water Monitoring Report Spring 2010 Yankee Nuclear Power Station Rowe, Massachusetts

| Location | Sample Date | Sample ID         | QC Code | Units | Arsenic* |
|----------|-------------|-------------------|---------|-------|----------|
| MW-101A  | 6/28/2006   | 208/MW101A-062806 | FS      | MG/L  | 0.0141   |
|          | 9/14/2006   | MW-101A-091406    | FS      | MG/L  | 0.0161   |
|          | 12/14/2006  | MW-101A-121406    | FS      | MG/L  | 0.012    |
|          | 3/14/2007   | MW-101A-031407    | FS      | MG/L  | 0.0092   |
|          | 3/26/2008   | MW-101A           | FS      | MG/L  | 0.01 J   |
|          | 3/10/2009   | MW-101A           | FS      | MG/L  | -        |
|          | 3/3/2010    | MW-101A           | FS      | MG/L  | -        |

Notes:

Prepared/Date: MGV 03/29/10 Checked/Date: JRY 04/07/10

\* GW-1 Standard for Arsenic is 0.01 mg/L (310 CMR 40.0974(2); effective 2/14/2008)

"-" indicates analyte not detected.

**Bold Italics** indicates an exceedance of the GW-1 standard.

FS - Field Sample

MG/L - milligrams per liter

J - estimated value

#### Post Closure Groundwater and Surface Water Monitoring Report Spring 2010 Yankee Nuclear Power Station

| Tankee Nuclear Tower Station |
|------------------------------|
| Rowe, Massachusetts          |
|                              |

|               |                        | Location     | CFW-1        |
|---------------|------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|               |                        | Sample Date  | 8/7/2003     | 8/18/2004    | 8/19/2005    | 8/25/2005    | 9/18/2006    | 9/19/2006    | 3/15/2007    | 3/16/2007    |
|               |                        | Sample ID    | CFW-1-080703 | CFW-1-081804 | CFW-1-081905 | CFW-1-082505 | CFW-1-091806 | CFW-1-091906 | CFW-1-031507 | CFW-1-031607 |
|               |                        | QC Code      | FS           |
| Analysis      | Parameter              | MCP Criteria |              |              |              |              |              |              |              |              |
| VOCs          | 4-Methyl-2-pentanone   | 350          | -            | -            | 0.0014 J     |              | -            |              | -            |              |
|               | Acetone                | 6.3          | R            | -            | -            |              | R            |              | -            |              |
|               | Chloromethane          | 1000         | -            | 0.00069 J    | 0.0007 J     |              | -            |              | -            |              |
|               | Naphthalene            | 0.14         | -            |              | -            |              | -            |              | -            |              |
|               | Toluene                | 1000         | -            | 0.00043 J    | -            |              | -            |              | -            |              |
| Metals        | Arsenic                | 0.01         | -            | -            | -            |              |              | -            |              | -            |
|               | Barium                 | 2            | 0.017        | 0.014        | 0.012        |              |              | 0.0451       |              | 0.0138       |
|               | Cadmium                | 0.005        | -            | -            | -            |              |              | -            |              | 0.0005 J     |
|               | Calcium                | NA           |              |              |              |              |              |              |              | 1.83         |
|               | Chromium               | 0.1          | -            | -            | -            |              |              | 0.0036 J     |              | -            |
|               | Copper                 | 1            | -            | -            | -            |              |              | 0.0091       |              | 0.0026 J     |
|               | Iron                   | 0.3*         | 1.8          | 1.2 J        | 0.706 J      |              |              | 10.7         |              | 1.98         |
|               | Lead                   | 0.015        | -            | -            | -            |              |              | 0.0056 J     |              | 0.0041 J     |
|               | Manganese              | 0.05*        | 0.047        | 0.11         | 0.0533       |              |              | 0.305        |              | 0.12         |
|               | Mercury                | 0.002        | -            | -            | -            |              |              | -            |              | -            |
|               | Nickel                 | 0.1          | -            | -            | -            |              |              | 0.0073       |              |              |
|               | Selenium               | 0.05         | -            | -            | -            |              |              | -            |              | -            |
|               | Silver                 | 0.1          | -            | -            | -            |              |              | -            |              | 0.0013 J     |
|               | Sodium                 | 20           |              |              |              |              |              |              |              | 1.28         |
|               | Zinc                   | 5            | -            | -            | -            |              |              | -            |              | 0.0126       |
| Cyanide       | Cyanide, Total         | 0.2          | -            | -            | -            |              |              | -            |              | -            |
| Wet Chemistry | Alkalinity, Total      | NA           | 6            | 5.1          | 7            |              | 5            |              | 7.14         |              |
|               | Chemical Oxygen Demand | NA           | -            | -            | -            |              | 14.4         |              |              | 17.8         |
|               | Chloride               | 250*         | -            | -            | -            |              | -            |              | 0.67 J       |              |
| 1             | Nitrate as N           | 10           | -            | -            |              | -            |              | 0.08 J       |              | -            |
|               | Sulfate                | 250*         | 4.4 J        | 4.9          | 3.81 J       |              | 3.7          |              | 3.32         |              |
|               | Total Dissolved Solids | 500*         | -            | 4            | 22           | 13           |              | 29           |              | 12           |

Notes:

All results in milligrams per liter (mg/L)

Bold Italics indicates an exceedance of applicable criteria.

Applicable criteria is the MCP GW-1 standard (310 CMR 40.0974(2);

effective 2/14/2008) and, if not avaible, the Maximum Contaminant Level or Secondary Maximum Contaminant Level (SMCL) (MADEP, 2007)

\* indicates SMCL; not a health-based standard

- FD Field Duplicate
- FS Field Sample

J - estimated value

NA - Not Available

QC - Quality Control

R - data rejected during validation; unusable

VOCs - volatile organic compounds

#### Post Closure Groundwater and Surface Water Monitoring Report Spring 2010 Yankee Nuclear Power Station Rowe, Massachusetts

|               |                        | Location     | CFW-1     | CFW-1     | CFW-1    | CFW-5        | CFW-5        | CFW-5        | CFW-5        | CFW-5        |
|---------------|------------------------|--------------|-----------|-----------|----------|--------------|--------------|--------------|--------------|--------------|
|               |                        | Sample Date  | 3/25/2008 | 3/11/2009 | 3/3/2010 | 8/5/2003     | 8/18/2004    | 8/17/2005    | 9/13/2006    | 3/8/2007     |
|               |                        | Sample ID    | CFW-1     | CFW-1     | CFW-1    | CFW-5-080503 | CFW-5-081804 | CFW-5-081705 | CFW-5-091306 | CFW-5-030807 |
|               |                        | QC Code      | FS        | FS        | FS       | FS           | FS           | FS           | FS           | FS           |
| Analysis      | Parameter              | MCP Criteria |           |           |          |              |              |              |              |              |
| VOCs          | 4-Methyl-2-pentanone   | 350          | -         | -         | -        | -            | -            | 0.0006 J     | -            | -            |
|               | Acetone                | 6.3          | 0.0027    | -         | -        | -            | -            | -            | R            | -            |
|               | Chloromethane          | 1000         |           |           |          | -            | 0.00069 J    | 0.0009 J     | -            | -            |
|               | Naphthalene            | 0.14         | -         | -         | -        | -            |              | -            | -            | -            |
|               | Toluene                | 1000         | -         | -         | -        | -            | -            | -            | -            | -            |
| Metals        | Arsenic                | 0.01         | -         | -         | -        | -            | -            | -            | -            | 0.0063       |
|               | Barium                 | 2            | -         | -         | -        | 0.043        | 0.061        | 0.0612       | 0.0638       | 0.0537       |
|               | Cadmium                | 0.005        | -         | -         | -        | -            | -            | -            | -            | -            |
|               | Calcium                | NA           | 1.5       | 1.7       | 1.3      |              |              |              |              | 29.1         |
|               | Chromium               | 0.1          | -         | -         | -        | -            | -            | -            | -            | -            |
|               | Copper                 | 1            | -         | -         | -        | -            | -            | -            | -            | -            |
|               | Iron                   | 0.3*         | 5.8 J     | 3.6 J     | 5.7      | 38           | 67           | 89.2         | 75.1         | 70.6         |
|               | Lead                   | 0.015        | -         | -         | -        | R            | -            | -            | 0.0036 J     | -            |
|               | Manganese              | 0.05*        | 0.15      | 0.14      | 0.20     | 3.5          | 4.4          | 4.16 J       | 4.62         | 4.28         |
|               | Mercury                | 0.002        | -         | -         | -        | -            | -            | -            | -            | -            |
|               | Nickel                 | 0.1          |           |           |          | -            | -            | -            | 0.0129       |              |
|               | Selenium               | 0.05         | -         | -         | -        | -            | -            | -            | 0.007 J      | -            |
|               | Silver                 | 0.1          | -         | -         | -        | -            | -            | -            | -            | -            |
|               | Sodium                 | 20           | 0.94      | -         | 0.81     |              |              |              |              | 3.71         |
|               | Zinc                   | 5            | -         | -         | -        | -            | -            | -            | -            | -            |
| Cyanide       | Cyanide, Total         | 0.2          | -         | -         | -        | -            | -            | -            | -            | 0.0176       |
| Wet Chemistry | Alkalinity, Total      | NA           | 3.4       | 3.4 J     | 4.6      | 87           | 93           | 101          | 130          | 127          |
|               | Chemical Oxygen Demand | NA           | -         | -         | -        | 26           | 32           | 27.3         | 36.9         | 51.9         |
|               | Chloride               | 250*         | -         | -         | -        | -            | 2.7          | 1.91         | 15.5 J       | 9.12         |
|               | Nitrate as N           | 10           | -         | -         | -        | -            | -            | -            | -            | 0.04 J       |
|               | Sulfate                | 250*         | 3.2       | 3.3       | 2.6      | 1.2          | 1.2          | 0.58 J       | -            | 0.44 J       |
|               | Total Dissolved Solids | 500*         | 46        | 1.0       | -        | 120          | 200          | 111          | 170          | 170          |

Notes:

All results in milligrams per liter (mg/L)

Bold Italics indicates an exceedance of applicable criteria.

Applicable criteria is the MCP GW-1 standard (310 CMR 40.0974(2);

effective 2/14/2008) and, if not avaible, the Maximum Contaminant Level or Secondary Maximum Contaminant Level (SMCL) (MADEP, 2007)

\* indicates SMCL; not a health-based standard

FD - Field Duplicate

FS - Field Sample

J - estimated value

NA - Not Available

QC - Quality Control

R - data rejected during validation; unusable

VOCs - volatile organic compounds

#### Post Closure Groundwater and Surface Water Monitoring Report Spring 2010 Yankee Nuclear Power Station

Rowe, Massachusetts

|               |                        | Location     | CFW-5     | CFW-5     | CFW-5     | CFW-5     | CFW-5    | CFW-5     | CFW-6        | CFW-6        | CFW-6        |
|---------------|------------------------|--------------|-----------|-----------|-----------|-----------|----------|-----------|--------------|--------------|--------------|
|               |                        | Sample Date  | 3/26/2008 | 3/26/2008 | 3/10/2009 | 3/10/2009 | 3/2/2010 | 3/2/2010  | 8/11/2003    | 8/18/2004    | 8/24/2005    |
|               |                        | Sample ID    | CFW-5     | CFW-5 DUP | CFW-5     | CFW-5 DUP | CFW-5    | CFW-5 DUP | CFW-6-081103 | CFW-6-081804 | FD001-082405 |
|               |                        | QC Code      | FS        | FD        | FS        | FD        | FS       | FD        | FS           | FS           | FD           |
| Analysis      | Parameter              | MCP Criteria |           |           |           |           |          |           |              |              |              |
| VOCs          | 4-Methyl-2-pentanone   | 350          | -         | -         | -         | -         | -        | -         | -            | -            | 0.0009 J     |
|               | Acetone                | 6.3          | -         | -         | -         | -         | -        | -         | -            | -            | -            |
|               | Chloromethane          | 1000         |           |           |           |           |          |           | -            | -            | -            |
|               | Naphthalene            | 0.14         | -         | -         | -         | -         | -        | -         | -            |              | -            |
|               | Toluene                | 1000         | -         | -         | -         | -         | -        | -         | -            | -            | -            |
| Metals        | Arsenic                | 0.01         | -         | -         | -         | -         | -        | -         | -            | -            | -            |
|               | Barium                 | 2            | -         | -         | 0.051     | 0.052     | 0.053    | 0.053     | 0.069        | 0.077        | 0.0641       |
|               | Cadmium                | 0.005        | -         | -         | -         | -         | -        | -         | -            | -            | -            |
|               | Calcium                | NA           | 16        | 15        | 28        | 28        | 28       | 27        |              |              |              |
|               | Chromium               | 0.1          | -         | -         | -         | -         | -        | -         | -            | -            | -            |
|               | Copper                 | 1            | -         | -         | -         | -         | -        | -         | -            | -            | -            |
|               | Iron                   | 0.3*         | 32 J      | 31 J      | 65 J      | 63 J      | 70       | 71        | 67           | 51 J         | 71.5         |
|               | Lead                   | 0.015        | -         | -         | -         | -         | -        | -         | -            | -            | -            |
|               | Manganese              | 0.05*        | 1.9       | 1.8       | 3.7       | 3.7       | 3.8      | 3.7       | 8.8          | 6.9          | 7.65         |
|               | Mercury                | 0.002        | -         | -         | -         | -         | -        | -         | -            | -            | -            |
|               | Nickel                 | 0.1          |           |           |           |           |          |           | -            | -            | -            |
|               | Selenium               | 0.05         | -         | -         | -         | -         | 0.021 J  | 0.022 J   | -            | -            | -            |
|               | Silver                 | 0.1          | -         | -         | 0.017     | 0.018     | -        | -         | -            | -            | -            |
|               | Sodium                 | 20           | 1.8       | 1.6       | -         | -         | 2.9      | 2.9       |              |              |              |
|               | Zinc                   | 5            | -         | -         | -         | -         | -        | -         | -            | -            | -            |
| Cyanide       | Cyanide, Total         | 0.2          | -         | -         | 0.012     | 0.012     | -        | -         | -            | -            | -            |
| Wet Chemistry | Alkalinity, Total      | NA           | 69        | 63        | 130 J     | 170 J     | 110      | 140       | 100          | 110          | 136          |
|               | Chemical Oxygen Demand | NA           | 18        | 17        | 35        | 30        | 29       | 26        | 38           | 33           | 30.1         |
|               | Chloride               | 250*         | 2.3       | 2.2       | 4.8       | 4.2       | 5.1 J    | 5.0 J     | -            | 2.3          | 9.12         |
|               | Nitrate as N           | 10           | -         | -         | -         | -         | -        | -         | -            | -            | -            |
|               | Sulfate                | 250*         | 2.3       | 2.3       | -         | -         | -        | -         | -            | -            | -            |
|               | Total Dissolved Solids | 500*         | 110 J     | 100 J     | 110       | 150       | 130      | 140       | 180          | 200          | 204          |

Notes:

All results in milligrams per liter (mg/L)

Bold Italics indicates an exceedance of applicable criteria.

Applicable criteria is the MCP GW-1 standard (310 CMR 40.0974(2);

effecitve 2/14/2008) and, if not available, the Maximum Contaminant Level

or Secondary Maximum Contaminant Level (SMCL) (MADEP, 2007)

\* indicates SMCL; not a health-based standard

FD - Field Duplicate

FS - Field Sample

J - estimated value

NA - Not Available QC - Quality Control

R - data rejected during validation; unusable

VOCs - volatile organic compounds

VOCs - volatile organic compounds

#### Post Closure Groundwater and Surface Water Monitoring Report Spring 2010 Yankee Nuclear Power Station

Rowe, Massachusetts

|               |                        | Location     | CFW-6        | CFW-6        | CFW-6        | CFW-6        | CFW-6        | CFW-6        | CFW-6     | CFW-6     | CFW-6    |
|---------------|------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------|-----------|----------|
|               |                        | Sample Date  | 8/24/2005    | 4/19/2006    | 9/13/2006    | 9/13/2006    | 3/8/2007     | 3/8/2007     | 3/25/2008 | 3/10/2009 | 3/2/2010 |
|               |                        | Sample ID    | CFW-6-082405 | CFW-6-042006 | CFW-6-091306 | FD001-091306 | CFW-6-030807 | FD007-030807 | CFW-6     | CFW-6     | CFW-6    |
|               |                        | QC Code      | FS           | FS           | FS           | FD           | FS           | FD           | FS        | FS        | FS       |
| Analysis      | Parameter              | MCP Criteria |              |              |              |              |              |              |           |           |          |
| VOCs          | 4-Methyl-2-pentanone   | 350          | 0.0008 J     | -            | -            | -            | -            | -            | -         | -         | -        |
|               | Acetone                | 6.3          | 0.008 J      | 0.0026 J     | R            | R            | -            | -            | -         | -         | -        |
|               | Chloromethane          | 1000         | -            | -            | -            | -            | -            | -            |           |           |          |
|               | Naphthalene            | 0.14         | -            | -            | -            | -            | -            | -            | -         | -         | -        |
|               | Toluene                | 1000         | -            | -            | -            | -            | -            | -            | -         | -         | -        |
| Metals        | Arsenic                | 0.01         | -            | -            | -            | -            | 0.0054 J     | 0.0049 J     | -         | -         | -        |
|               | Barium                 | 2            | 0.0629       |              | 0.0544       | 0.0592       | 0.0612       | 0.0592       | -         | -         | -        |
|               | Cadmium                | 0.005        | -            | -            | -            | -            | 0.0005 J     | 0.0002 J     | -         | -         | -        |
|               | Calcium                | NA           |              |              |              |              | 25.5         | 25.4         | 7.4       | 14        | 14       |
|               | Chromium               | 0.1          | -            | -            | 0.0024 J     | 0.0027 J     | 0.0022 J     | 0.0028 J     | -         | -         | -        |
|               | Copper                 | 1            | -            | -            | -            | -            | -            | -            | -         | -         | -        |
|               | Iron                   | 0.3*         | 71           |              | 64.6         | 68.1         | 56.8         | 58.8         | 0.57 J    | 39 J      | 20       |
|               | Lead                   | 0.015        | -            | -            | 0.0031 J     | 0.003 J      | 0.0029 J     | -            | -         | -         | -        |
|               | Manganese              | 0.05*        | 7.54         |              | 6.69         | 7.2          | 6.74         | 6.8          | 0.2       | 3.6       | 2.9      |
|               | Mercury                | 0.002        | -            | -            | 0.00018 J    | -            | 0.00006 J    | -            | -         | -         | -        |
|               | Nickel                 | 0.1          | -            | -            | 0.0098       | 0.01         |              |              |           |           |          |
|               | Selenium               | 0.05         | -            | -            | 0.0091 J     | 0.0101 J     | -            | -            | -         | -         | -        |
|               | Silver                 | 0.1          | -            | -            | -            | -            | -            | -            | -         | 0.013     | -        |
|               | Sodium                 | 20           |              |              |              |              | 1.56         | 1.52         | 1.3       | -         | 2.7      |
|               | Zinc                   | 5            | -            | -            | 0.0134       | -            | -            | 0.0056       | -         | -         | -        |
| Cyanide       | Cyanide, Total         | 0.2          | 0.0127       |              | -            | -            | -            | -            | -         | -         | -        |
| Wet Chemistry | Alkalinity, Total      | NA           | 116          |              | 108          | 131          | 100          | 128          | 17        | 100 J     | 71       |
|               | Chemical Oxygen Demand | NA           | 31.8         |              | 35.1         | 36.4         | 26.3         | 51.9         | 27        | 23        | 12       |
|               | Chloride               | 250*         | 7.79         |              | 14.7 J       | 16.1 J       | 12.5         | 11.8         | -         | 3.2       | 2.7 J    |
|               | Nitrate as N           | 10           | -            |              | 0.04 J       | -            | 0.04 J       | 0.04 J       | -         | -         | -        |
|               | Sulfate                | 250*         | -            |              | -            | -            | 0.7 J        | 0.68 J       | 4.7       | 5.8       | 4.3 J    |
|               | Total Dissolved Solids | 500*         | 214          |              | 147          | 172          | 189          | 181          | 33        | 77        | 89 J     |

Notes:

All results in milligrams per liter (mg/L)

Bold Italics indicates an exceedance of applicable criteria.

Applicable criteria is the MCP GW-1 standard (310 CMR 40.0974(2);

effecitve 2/14/2008) and, if not available, the Maximum Contaminant Level

or Secondary Maximum Contaminant Level (SMCL) (MADEP, 2007)

\* indicates SMCL; not a health-based standard

- FD Field Duplicate
- FS Field Sample J - estimated value

NA - Not Available

QC - Quality Control

R - data rejected during validation; unusable

VOCs - volatile organic compounds

"-" indicates analyte not detected

Prepared/Date: MGV 03/29/10

Checked/Date: JRY 04/07/10

P:\Projects\3617087152 - 3 Yankee GW Monitoring\4.0\_Deliverables\4.1\_Reports\Yankee Rowe\Annual Report, Spring 2010\ Table 5 - Southeast Construction Fill Area Chem.xls

## Post Closure Groundwater and Surface Water Monitoring Report Spring 2010 Yankee Nuclear Power Station Rowe, Massachusetts

|               |                        | Loc Name          | SW-1      | SW-1      | SW-1     | SW-2      |
|---------------|------------------------|-------------------|-----------|-----------|----------|-----------|
|               |                        | Field Sample Date | 3/25/2008 | 3/11/2009 | 3/3/2010 | 3/25/2008 |
|               |                        | Field Sample ID   | SW-1      | SW-1      | SW-1     | SW-2      |
|               |                        | QC Code           | FS        | FS        | FS       | FS        |
| Analysis      | Parameter              | Screening Values  |           |           |          |           |
| VOCs          | Target Compounds       |                   | -         | -         | -        | -         |
| Metals        | Calcium                | NA                | 2.5       | 2.2       | 2.6      | 2.3       |
| Metals        | Iron                   | 1                 | 0.016 J   | 0.064 J   | 0.032    | 0.021 J   |
| Metals        | Manganese              | 0.05*             | -         | -         | -        | -         |
| Metals        | Sodium                 | 20*               | 1.1       | -         | 0.78     | 1.1       |
| Cyanide       | Cyanide, Total         | 0.0052            | -         | -         | -        | -         |
| Wet Chemistry | Alkalinity, Total      | 20                | 1.9       | 2.3       | 5.4      | 1.1       |
| Wet Chemistry | Sulfate                | 250*              | 5         | 4.2       | 5.5      | 5         |
| Wet Chemistry | Total Dissolved Solids | 250*              | 21        | 5.0       | 19 J     | 54        |

Notes:

All results in milligrams per liter (mg/L)

Screening value is the USEPA Ambient Water Quality Criteria

(AWQC) and, if not available, the Maximum Contaminant

Level or Secondary Maximum Contaminant Level (MADEP, 2007)

\* indicates criteria is from the Secondary Maximum

Contaminant Level; not a health-based standard

FS - Field Sample

J - estimated value

NA - Not Available

QC - Quality Control

VOCs - volatile organic compounds

## Post Closure Groundwater and Surface Water Monitoring Report Spring 2010 Yankee Nuclear Power Station Rowe, Massachusetts

|               |                        | Loc Name          | SW-2      | SW-2     | SW-3      | SW-3      |
|---------------|------------------------|-------------------|-----------|----------|-----------|-----------|
|               |                        | Field Sample Date | 3/10/2009 | 3/3/2010 | 3/25/2008 | 3/10/2009 |
|               |                        | Field Sample ID   | SW-2      | SW-2     | SW-3      | SW-3      |
|               |                        | QC Code           | FS        | FS       | FS        | FS        |
| Analysis      | Parameter              | Screening Values  |           |          |           |           |
| VOCs          | Target Compounds       |                   | -         | -        | -         | -         |
| Metals        | Calcium                | NA                | 2.1       | 2.5      | 2.2       | 2.0       |
| Metals        | Iron                   | 1                 | 0.063 J   | 0.037    | 0.029 J   | 0.061 J   |
| Metals        | Manganese              | 0.05*             | -         | -        | -         | -         |
| Metals        | Sodium                 | 20*               | -         | 0.80     | 1.1       | -         |
| Cyanide       | Cyanide, Total         | 0.0052            | -         | -        | -         | -         |
| Wet Chemistry | Alkalinity, Total      | 20                | 2.1       | 5.4      | -         | 1.7       |
| Wet Chemistry | Sulfate                | 250*              | 5.4       | 5.5      | 5.9       | 5.3       |
| Wet Chemistry | Total Dissolved Solids | 250*              | 16        | 19 J     | 8         | 26        |

Notes:

All results in milligrams per liter (mg/L)

Screening value is the USEPA Ambient Water Quality Criteria

(AWQC) and, if not available, the Maximum Contaminant

Level or Secondary Maximum Contaminant Level (MADEP, 2007)

\* indicates criteria is from the Secondary Maximum Contaminant Level; not a health-based standard

FS - Field Sample

J - estimated value

NA - Not Available

QC - Quality Control

VOCs - volatile organic compounds

## Post Closure Groundwater and Surface Water Monitoring Report Spring 2010 Yankee Nuclear Power Station Rowe, Massachusetts

|               |                        | Loc Name          | SW-3     | SW-4      | SW-4      | SW-4     |
|---------------|------------------------|-------------------|----------|-----------|-----------|----------|
|               |                        | Field Sample Date | 3/3/2010 | 3/25/2008 | 3/10/2009 | 3/2/2010 |
|               |                        | Field Sample ID   | SW-3     | SW-4      | SW-4      | SW-4     |
|               |                        | QC Code           | FS       | FS        | FS        | FS       |
| Analysis      | Parameter              | Screening Values  |          |           |           |          |
| VOCs          | Target Compounds       |                   | -        | -         | -         | -        |
| Metals        | Calcium                | NA                | 2.4      | 2.6       | 2.2       | 2.4      |
| Metals        | Iron                   | 1                 | 0.50     | 1.1 J     | 0.55 J    | 0.90     |
| Metals        | Manganese              | 0.05*             | 0.074    | 0.14      | 0.076     | 0.13     |
| Metals        | Sodium                 | 20*               | 0.60     | 1.1       | -         | 0.65     |
| Cyanide       | Cyanide, Total         | 0.0052            | -        | -         | -         | -        |
| Wet Chemistry | Alkalinity, Total      | 20                | 5.6      | 3.5       | 2.9       | 6.5      |
| Wet Chemistry | Sulfate                | 250*              | 4.8      | 5.1       | 5.2       | 4.8 J    |
| Wet Chemistry | Total Dissolved Solids | 250*              | 13 J     | 19        | 35        | 11 J     |

Notes:

All results in milligrams per liter (mg/L)

Screening value is the USEPA Ambient Water Quality Criteria

(AWQC) and, if not available, the Maximum Contaminant

Level or Secondary Maximum Contaminant Level (MADEP, 2007)

\* indicates criteria is from the Secondary Maximum Contaminant Level; not a health-based standard

FS - Field Sample

J - estimated value

NA - Not Available

QC - Quality Control

VOCs - volatile organic compounds

## Post Closure Groundwater and Surface Water Monitoring Report Spring 2010 Yankee Nuclear Power Station Rowe, Massachusetts

|               |                        | Loc Name          | SW-5      | SW-5      | SW-5     |
|---------------|------------------------|-------------------|-----------|-----------|----------|
|               |                        | Field Sample Date | 3/25/2008 | 3/10/2009 | 3/2/2010 |
|               |                        | Field Sample ID   | SW-5      | SW-5      | SW-5     |
|               |                        | QC Code           | FS        | FS        | FS       |
| Analysis      | Parameter              | Screening Values  |           |           |          |
| VOCs          | Target Compounds       |                   | -         | -         | -        |
| Metals        | Calcium                | NA                | 2.3       | 2.2       | 2.0      |
| Metals        | Iron                   | 1                 | 0.26 J    | 0.48 J    | 0.27     |
| Metals        | Manganese              | 0.05*             | 0.04      | 0.071     | 0.044    |
| Metals        | Sodium                 | 20*               | 1         | -         | 0.60     |
| Cyanide       | Cyanide, Total         | 0.0052            | -         | -         | -        |
| Wet Chemistry | Alkalinity, Total      | 20                | 1.5       | 2.7       | 4.3      |
| Wet Chemistry | Sulfate                | 250*              | 5         | 5.3       | 4.2 J    |
| Wet Chemistry | Total Dissolved Solids | 250*              | 31        | 3.0       | 4.0 J    |

Notes:

All results in milligrams per liter (mg/L)

Screening value is the USEPA Ambient Water Quality Criteria

(AWQC) and, if not available, the Maximum Contaminant

Level or Secondary Maximum Contaminant Level (MADEP, 2007)

\* indicates criteria is from the Secondary Maximum

Contaminant Level; not a health-based standard

FS - Field Sample

J - estimated value

NA - Not Available

QC - Quality Control

VOCs - volatile organic compounds

"-" indicates analyte not detected

Prepared/Date: MGV 03/29/10

Checked/Date: JRY 04/07/10

APPENDIX A

FIELD DATA RECORDS - MARCH 2010

# ISFSI Radiation Protection

|                                          | RP-                                           | 05            |
|------------------------------------------|-----------------------------------------------|---------------|
|                                          | Rev                                           | . 3           |
| GRO                                      | UND WATER SAMPLING FIELD & C.C.               |               |
| G                                        | Form 1                                        |               |
| Sample LocationCFW1                      | NYZ. II T                                     |               |
| Sampling Team REALE A.                   | well Designation CFW                          |               |
| Date 3/3/10                              | BESample PeriodARCHONO                        |               |
| STADEO                                   | Time 0950 (Sample A)                          |               |
| 219121 (2) 0915                          | (SAMPLE)                                      |               |
|                                          | END & 1020                                    | ,             |
| Measuring Point                          | Depth to Mid Screen                           | (0)           |
| Well Depth (from many                    | Diameter of Well 2                            | _( <b>π</b> ) |
| Denth to                                 | at) (D)                                       | (in)          |
| Deput to water (DTW)                     | 9.12                                          | (ft)          |
| Length of Water Column (LWC)             | 3.37                                          | (ft)          |
| Volume of Water in Well (VW)             | $_{5,75}$ (ft) (LWC=D_DT                      | 177<br>177    |
|                                          | 0.92 ral 0                                    | w ).          |
| Volume of D                              | gai Conversi                                  | on            |
| VTP = V                                  | W x 3) 7 7 Factor, 16                         | 51            |
| •                                        | (gal)                                         |               |
|                                          |                                               |               |
|                                          |                                               |               |
| At Time of Mar                           |                                               |               |
| Color Measurements:                      |                                               |               |
| COLOF FAINT CLOUDY                       |                                               | ľ             |
| Total volume purged DRV                  | Odor NONE                                     |               |
| Purging method GEO Quan Q                | Duration of purging N/A                       | -             |
| Weather condition                        | Did well go dry?                              |               |
| Conditions Fair OVERCA                   | IST. COLD LITE SUGAR                          |               |
|                                          | -, che snow.                                  |               |
|                                          |                                               |               |
|                                          |                                               | l             |
| Pump Serial Numb                         |                                               |               |
| Water On its                             | -40                                           | *             |
| water Quality Monitor Serial Number      | Molt                                          |               |
| Analyses Requested Voc, CoD, CA)         | 110-05                                        |               |
| 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | This nitrate, chloride, sulfate, TDS allalish |               |

Previous Final Readings: pH 584 Cond 6413 Turb 228 DO 1512 Temp 334 ORP 198 DTW 233 Flow 100 3H -

## **ISFSI** Radiation Protection

0945

#### WATER QUALITY PARAMETERS Form 2 Sample Round CFW1 2010 MARCH Current Readings . . DTW Comments D.0 Temp ORP Turb Time pН Cond (°C) (min) (NTU) (mg/L)(mv) (feet) mS/cm +/-1E +/-10 mv +/- 10% +/-10% +/- 0.1 +/- 3% 0 NA <10NTU std.unit 3/1/10. RECORD 5 WELL WAS PURGED DRY ON 10 DATA: ONE SET FIELD 15 6.1 215 3.37 10,95 4.97 ,095 28.9 20 COLLECT SAMPLES 0950 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

RP-05 Rev. 3

| SFSI Radiation Protection                                                                                           | RP-05<br>Rev. 3                                              |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| GROUND WAT                                                                                                          | <u>FER SAMPLING FIELD LOG</u><br>Form 1                      |
|                                                                                                                     | XX II Designation (FL)5                                      |
| Sample Location <u>CFW3</u>                                                                                         | Well Designation Cr 2010                                     |
| Sampling Team <u>NENE AUBE</u>                                                                                      | _Sample Period                                               |
| Date 3/2/10                                                                                                         | Time                                                         |
| START & 0915                                                                                                        |                                                              |
|                                                                                                                     | Depth to Mid Screen(ir)                                      |
| Measuring Point TOR                                                                                                 | Diameter of Well $2.0$ (ff)                                  |
| Well Depth (from measuring point) (D)                                                                               |                                                              |
| Depth to water (DTW)                                                                                                | $\frac{4,30}{100}$                                           |
| Length of Water Column (LWC)                                                                                        | <u>3,32</u> (ff) (LWC=D-D1W)                                 |
| Volume of Water in Well (VW)                                                                                        | <u> </u>                                                     |
| Volume of Purge (VTP) (VTP = VW x                                                                                   | 3) <u>1.6896 (gal)</u>                                       |
| At Time of Measurements:                                                                                            | Odor NONE                                                    |
| Total volume purged 4,2484 G                                                                                        | Duration of purging SG MIN                                   |
| Province method (1500/100)                                                                                          | Did well go dry?                                             |
| Weather conditions <u>SUNNY</u> , COLL                                                                              | ), CALM                                                      |
|                                                                                                                     |                                                              |
| Pump Serial Number <u>5008-4</u><br>Water Quality Monitor Serial Number <u>Analyses Requested Voc, con, col</u> , n | MO15-05<br>Hoste, chloride, sulfate, metals, TOS, alkalinity |
| Di IDestino di 39 Conde                                                                                             | 171Turb 0-37 DO 437 Temp 393 ORP -63 DTW_5.11                |
| Previous Final Readings: pH Cond_                                                                                   | mpA                                                          |

Page 10 of 40

## ISFSI Radiation Protection

|      | Form 2           |                              |        |                      |        |         |          |        |          |
|------|------------------|------------------------------|--------|----------------------|--------|---------|----------|--------|----------|
|      | Sample           | Sample Round MARCH 2010 CFW5 |        |                      |        |         |          |        |          |
|      | Current Readings |                              |        |                      |        |         |          |        |          |
|      | Time             | pH                           | Cond   | Turb                 | D.0    | Temp    | ORP      | DTW    | Comments |
|      | (mm)             |                              | mS/cm  | (NIU)                | (mg/L) | (°C)    | (mv)     | (feet) |          |
| 6935 | BEGIN<br>PUNGIE  | +/- 0.1<br>std.unit          | +/- 3% | +/- 10%<br>NA <10NTU | +/-10% | +/- 1 E | +/-10 mv |        | RATE     |
| 0940 | 5                | 5.55                         | . 488  | 76.4                 | 0.00   | 4.2     | 11       | 5.15   | 190      |
| 0945 | 10               | 5.48                         | . 482  | 55.7                 | 0,00   | 4.3     | 12       | 5.13   | 190      |
| 0950 | 15               | 5,43                         | . 477  | 42.0                 | 0,00   | 4.4     | -8       | 5.12   | 190      |
| 0955 | 20               | 5.41                         | . 462  | 33.8                 | 0.00   | 4,4     | -16      | 5,11   | 190      |
| 1000 | 25               | 5.41                         | . 458  | 26.5                 | 0,00   | 4.4     | -21      | 5.11   | 190      |
| 1005 | 30               | 5.43                         | 2459   | 17.4                 | 0,00   | 4.5     | -25      | 5.11   | 190      |
| 1010 | 35               | 5.48                         | .457   | 12,9                 | 0,00   | 4.6     | -31      | 5.11   | 190      |
| 1015 | 40               | 5.58                         | .455   | 9,04                 | 0,00   | 4.6     | -41      | 5,11   | 190      |
| 1020 | 45               | 5.69                         | .453   | 6.29                 | 0,00   | 4.7     | -50      | 5.11   | 190      |
| 1025 | 50               | 5.79                         | .451   | 4.88                 | 0,00   | 4.7     | -58      | 5.11   | 190      |
| 1030 | 55               | 5.86                         | .446   | 3:40                 | 0,00   | 4.6     | -64      | 5,11   | 190      |
| 1035 | 60               | 5.91                         | .446   | 2.79                 | 0.00   | 4.6     | -69      | 5,11   | 190      |
| 1040 | 65               | 5.94                         | . 442  | 2,27                 | 0,00   | 4.6     | -76      | 5.11   | 190      |
| 1045 | 70               | 5,95                         | .441   | 2,25                 | 0,00   | 4,5     | -76      | 5.11   | 190      |
| 1050 | 75               | 5.96                         | .440   | 2.23                 | 0,00   | 4,5     | -78      | 5,11   | 190      |
| 1051 | 80               | COLLE                        | CT SA. | MPLES                | , DUP; | M5, M   | SD.      |        |          |
|      | 85               |                              |        |                      |        |         |          |        |          |
|      | 90               |                              |        |                      |        |         |          |        |          |
|      | 95               |                              |        |                      |        |         |          |        |          |
|      | 100              |                              |        |                      |        |         |          |        |          |
|      | 105              |                              |        |                      |        |         |          |        |          |
|      | 110              |                              |        |                      |        |         |          |        |          |
|      | 115              |                              |        |                      |        |         |          |        |          |
|      | 120              |                              |        |                      |        |         |          |        |          |

## WATER QUALITY PARAMETERS

RP-05 Rev. 3

| ISFSI Radiation Protection                                                                                                           | RP-05<br>Rev. 3                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| GROUND WATE                                                                                                                          | IR SAMPLING FIELD LOG<br>Form 1                                                        |
| CCU - SEEA                                                                                                                           | The II Designation (Gla)-6                                                             |
| Sample Location CFW-6 0000 V                                                                                                         | Vell Designation <u>Crub 2010</u>                                                      |
| Sampling Team M. Ven Noo (3enium S                                                                                                   | $\frac{1}{10000000000000000000000000000000000$                                         |
| Date <u>5-2-70</u> 1                                                                                                                 | ime                                                                                    |
| Measuring Point <u>To R</u><br>Well Depth (from measuring point) (D)                                                                 | Depth to Mid Screen(ft)<br>Diameter of Well $2.6$ (in)<br>8.3 (ft)                     |
| Depth to water (TTW)                                                                                                                 | 5.74 (ft)                                                                              |
| Length of Water Column (LWC)                                                                                                         | 2.63 (ft) (LWC=D-DTW)                                                                  |
| Volume of Water in Well (VW)                                                                                                         | 0.42 gal Conversion                                                                    |
| Volume of Purge (VTP) (VTP = VW x 3)                                                                                                 | 1-26 (gal)                                                                             |
|                                                                                                                                      |                                                                                        |
| At Time of Measurements:                                                                                                             | Shill some T                                                                           |
| Color Clear, slight yellow fint                                                                                                      | Odor Jisht olgen C                                                                     |
| Total volume purged <u>1.66 g.d.</u>                                                                                                 | Duration of purging <u>72 mile</u>                                                     |
| Purging method Low- Flow, Geogramp                                                                                                   | Did well go dry?/                                                                      |
| Weather conditions <u>Sunny</u> , 35°F                                                                                               |                                                                                        |
|                                                                                                                                      |                                                                                        |
|                                                                                                                                      |                                                                                        |
| Pump Serial Number <u>5008-39</u><br>Water Quality Monitor Serial Number <u>Hord</u><br>Analyses Requested <u>NOC</u> COD, CN, Metal | so u. 22 Mois-09, HACH 21009 MO24-20<br>s, Nitrete, Chloride, Snifete, TDS, Alkalinity |
|                                                                                                                                      |                                                                                        |
| Previous Final Readings: pH 6.00Cond a 4781                                                                                          | urb <u>i48</u> DO <u>000</u> Temp <u>44</u> ORP <u>-44</u> DTW <u>643</u>              |
| Flow 150 3H 2440                                                                                                                     |                                                                                        |

Page 10 of 40

## **ISFSI** Radiation Protection

#### CFW-6 Form 2 Sample Round March 2010 Current Readings ORP DTW Turb D.0 Temp Comments Time pН Cond (min) (NTU) (°C) mS/cm (mg/L)(mv) (feet) 3.2.10 0 +/- 0.1 +/- 3% +/- 10% +/-10% +/-1E +/-10 mv 0920 Puge@ 150 mL/min NA <10NTU 5.74 std.unit 5 98 0925 6.98 5.9 22.2 9.47 5.79 0.171 69) 10 53 12.45 4.6 0930 11.9 5.86 0.124 15 45 6.92 4.5 0935 5.90 0.143 5.45 12.14 20 0940 5.93 1.79 11.92 42 6.90 4.4 0.15) 25 0945 3) 6.88 5.98 0.166 0.98 11.74 4.5 30 6.90 0950 0.79 45 35 11.38 5.98 0.171 0955 35 6.93 10.90 4.6 3) 5.99 1.10 0.172 4.7 1000 40 35 5.99 11.09 6.94 0.172 0.83 45 m Collect Samples 1002 50-1m 3.2.10 Sampling complete. Well 1020 Secure 55 60 65 70 75 80 85 90 95 100 105 110 115 120

## WATER QUALITY PARAMETERS

Page 11 of 40

RP-05 Rev. 3
| ISFSI Radiation Protection                                                  |                                                                             | RP-05<br>Rev. 3      |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------|
| GROUND WAT                                                                  | <u>FER SAMPLING FIELD LOG</u><br><u>Form 1</u>                              |                      |
| Sample Location Monree DAM<br>Sampling Team M. Van Noordenven<br>Date 33-10 | Well Designation Monroe Dam<br>Sample Period March 2010<br>Time 1110 - 1125 |                      |
|                                                                             | Depth to Mid Screen                                                         | (ft)                 |
| Measuring Point                                                             | Diameter of Well                                                            | (in)                 |
| Well Depth (from measuring point) (D)<br>Depth to water (DTW)               |                                                                             | (ft)<br>(ft)         |
| Length of Water Column (LWC)                                                | (ft) (LW0                                                                   | C=D-DTW)             |
| Volume of Water in Well (VW)                                                | gal                                                                         | Conversion<br>Factor |
| Volume of Purge (VTP) (VTP = VW x 3                                         | 3) (gal)                                                                    |                      |

| At Time of Measurements:       |   | 1                       |
|--------------------------------|---|-------------------------|
| Color Clear                    |   | Odor None               |
| Total volume purged N/A        |   | Duration of purging N/A |
| Purging method 1/A             | _ | Did well go dry?        |
| Weather conditions Snowy, 35'F |   |                         |
|                                |   |                         |

.

| Pump Serial Number     | NA                    |                      | •               |         |
|------------------------|-----------------------|----------------------|-----------------|---------|
| Water Quality Monito   | or Serial Number Hanb | : 4.22 Mais-09       | , HACH 2100P    | mo24-20 |
| Previous Final Reading | s: pH482Condoo4Tu     | rb 5.91 DO 10-41 Tem | p 2.1 ORP 288 D |         |
|                        | Flow 3U CMDA          |                      |                 |         |

#### WATER QUALITY PARAMETERS Monroe Dam Form 2 Sample Round March 2010 **Current Readings** Temp ORP Turb D.0 DTW Comments Time pН Cond (min) (NTU) (°C) mS/cm (mg/L) (mv) (feet) +/-10% +/-1E +/-10 mv +/- 0.1 +/- 3% +/- 10% 0 NA <10NTU std.unit and NAA 3-3-10 \$ 1125 152 2.0 3.10 12.18 6:31 0.035 10 15 20 25 30 35 40 4 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

RP-05

Rev. 3

| ISFSI Radiation Protection              | RP-05<br>Rev. 3                              |
|-----------------------------------------|----------------------------------------------|
| GROUND WATE                             | <u>R SAMPLING FIELD LOG</u><br><u>Form 1</u> |
| Sample Location <u>MUIOIA</u> W         | Vell Designation MW 101A                     |
| Sampling Team <u><i>RENE AUBE</i></u> S | ample Period <u>MARCH 2010</u>               |
| Date <u>3/3/10</u> T                    | ime_ 1145 (SAMPLE)_                          |
| START @ 1115                            | END @ 1200                                   |
|                                         | Depth to Mid Screen(ft)                      |
| Measuring Point TOR                     | Diameter of Well 2.0 (in)                    |
| Well Depth (from measuring point) (D)   | <u>24,1)</u> (ft)                            |
| Depth to water (DTW)                    | 13.52 (ft)                                   |
| Length of Water Column (LWC)            | 10,59 (ft) (LWC=D-DTW)                       |
| Volume of Water in Well (VW)            | 1,6944 gal Conversion                        |
|                                         | Factor, 16                                   |
| Volume of Purge (VTP) (VTP = VW x 3)    | 5,0832 (gal)                                 |

| At Time of Measurements:                   |                         |
|--------------------------------------------|-------------------------|
| Color CLEAR                                | OdorNONE                |
| Total volume purged DRV                    | Duration of purging N/A |
| Burging method GEO DIIMD                   | Did well go dry? YES    |
| Westler conditions File SUFRCAST           | COLD LITE SALOU ]       |
| weather conditions <u>Full Sventchov</u> , | OCD, ETTE JUGA.         |
|                                            |                         |

| Pump Serial Number     |                  | 5008-40                        | ,             |            |                 |  |
|------------------------|------------------|--------------------------------|---------------|------------|-----------------|--|
| Water Quality Monito   | r Serial Number  | MOI5                           | -05           |            |                 |  |
| Analyses Requested     | Arseniz          |                                | <u></u>       |            |                 |  |
| Previous Final Reading | s: pH 11.48 Cond | <u>1.02</u> Turb <u>(20</u> DC | 4.17 Temp 691 | ORP-139 DT | W <u>13.8</u> 7 |  |

# RP-05 Rev. 3

# WATER QUALITY PARAMETERS

|            |               |                     | <u>`</u>      |                      | For           | <u>m 2</u>   |             |               |          |
|------------|---------------|---------------------|---------------|----------------------|---------------|--------------|-------------|---------------|----------|
|            | Sample        | Round               | MAS           | ICH 20               | 310           |              | A           | 10-1          | 161014   |
|            | •             | \$                  | -             | Current              | Readings      |              |             |               |          |
|            | Time<br>(min) | рН                  | Cond<br>mS/cm | Turb<br>(NTU)        | D.O<br>(mg/L) | Temp<br>(°C) | ORP<br>(mv) | DTW<br>(feet) | Comments |
|            | 0             | +/- 0.1<br>std.unit | +/- 3%        | +/- 10%<br>NA <10NTU | +/-10%        | +/- 1 E      | +/-10 mv    |               |          |
|            | 5             | WELL                | WAS P         | URGED                | DRY C         | N 3/1/       | 10. TO      | Econi         | )        |
|            | 10            | ONE S               | SET FI        | ELD D.               | ATA:          |              |             |               |          |
| 1140       | 15            | 10.22               | , 185         | 2.95                 | 0,99          | 5.6          | 29          | 13.52         |          |
| 1145       | 20            | COUE                | CT SA         | MPIE                 | 5             |              |             |               |          |
|            | 25            |                     |               |                      |               |              |             |               |          |
|            | 30            |                     |               |                      |               |              |             |               |          |
|            | 35            |                     |               |                      |               |              |             |               |          |
|            | 40            |                     |               |                      |               | 1            |             |               |          |
|            | 45            |                     |               |                      |               |              |             |               |          |
|            | 50            |                     |               |                      |               |              |             |               |          |
|            | 55            |                     |               |                      |               |              |             |               |          |
|            | 60            |                     |               |                      |               | 1            |             |               |          |
|            | 65            |                     |               |                      |               |              |             |               |          |
|            | 70            |                     |               |                      |               |              | ·           |               |          |
|            | 75            |                     |               |                      |               |              |             |               |          |
|            | 80            |                     |               |                      |               |              |             |               |          |
|            | 85            |                     | -             |                      |               |              |             |               |          |
|            | 90            |                     |               |                      |               |              |             | ·             |          |
|            | 95            |                     |               |                      |               |              |             |               |          |
|            | 100           |                     |               |                      |               |              |             |               |          |
| <i>4</i> , | 105           |                     |               |                      |               |              |             |               |          |
|            | 110           |                     |               |                      |               |              |             |               |          |
|            | 115           |                     |               |                      |               |              | _           |               | -        |
|            | 120           | -                   |               |                      |               |              |             |               |          |
|            | 1             | 1                   | 1             |                      | 4             | 1 N N        | 1           |               |          |

| ISFSI Radiation Protection            |                               | en e                                                                       |                                 | RP-05<br>Rev. 3 |
|---------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------|
| GROUND WAT                            | <u>FER SAN</u><br><u>Form</u> | 1PLING FIELI                                                                                                   | <u>DLOG</u>                     |                 |
| Sample Location MW-7020               | _Well De                      | signation <u>MW</u>                                                                                            | 1020                            |                 |
| Sampling Team M-Van Noordennen        | _Sample                       | Period Merch                                                                                                   | 2010                            |                 |
| Date <u>3-1-70</u> , <u>3-4-70</u>    | Time                          |                                                                                                                | 0-1150                          |                 |
|                                       |                               | Depth to Mid So                                                                                                | reen                            | (ft)            |
| Measuring Point TOR                   |                               | Diameter                                                                                                       | of Well                         | . <i>O</i> (in) |
| Well Depth (from measuring point) (D) |                               |                                                                                                                | 22.55                           | (ft)            |
| Depth to water (DTW)                  |                               |                                                                                                                | 16.91                           | (ft)            |
| Length of Water Column (LWC)          |                               | 5.64                                                                                                           | (ft) (LW                        | /C=D-DTW)       |
| Volume of Water in Well (VW)          |                               | 0.90                                                                                                           | gal                             | Conversion      |
| Volume of Purge (VTP) (VTP = VW x 3   | ;) _                          | 2.7                                                                                                            | (gal)                           | Factor_0.16     |
|                                       |                               | -<br>                                                                                                          |                                 |                 |
|                                       |                               | an ng kanan na kanan dan yan dan kanan goo ya da kanan k |                                 |                 |
| At Time of Measurements:<br>Color     | _                             | Odor <u>Shight</u><br>Duration of pu<br>Did well go dr                                                         | oczanic<br>urging N/A<br>v? Ves |                 |

| Pump Serial Number _    | Geophimp                       | 5008-39                                   |         |
|-------------------------|--------------------------------|-------------------------------------------|---------|
| Water Quality Monitor   | Serial Number                  | Horiba 4.22 Mois-09, HACH 2100P           | m024.20 |
| Analyses Requested      | 8-spec, Sr-9                   | Po, H-3                                   |         |
|                         |                                |                                           |         |
| Previous Final Readings | s: pH <u>841</u> Cond <u>o</u> | 327 Turb 4.55 DO 9.29 Temp 5.33 ORP 61 DT | W 16.98 |

Flow 100 3H < MOA

Weather conditions Shony, 35°F

# RP-05

Rev. 3

#### WATER QUALITY PARAMETERS

MW-1020 Form 2 Sample Round 2010 March Current Readings . Time pН Cond Turb D.0 Temp ORP DTW Comments (min) (NTU) (°C) mS/cm (mg/L) (mv) (feet) +/- 0.1 +/- 3% +/-10% 0 +/- 10% +/-1E +/-10 mv std.unit NA <10NTU 5 16.91 Well was purged 6.68 5.8) 0.182 4.40 -3.> 1120 6.8 10 Sampling dy on 3-1-10 Complete 1150 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

3-4.10

ļ

R

| ISFSI Radiation Protection                                                                  | RP-05<br>Rev. 3                                                                                 |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| GROUND WATE                                                                                 | <u>ER SAMPLING FIELD LOG</u><br>Form 1                                                          |
| Sample Location $MW104A$ NSampling Team $NENE$ $AUBE$ SDate $3/2/10$ $3/2/10$ $3/2/10$      | Vell Designation <u>MUJ104A</u><br>Sample Period <u>MANCH 2010</u><br>Sime <u>1536 (SAMPLE)</u> |
| START & 1430                                                                                | END @ 1730<br>Depth to Mid Screen (ft)                                                          |
| Measuring Point <u>TOR</u><br>Well Depth (from measuring point) (D)<br>Depth to water (DTW) | Diameter of Well $2.0$ (in)<br>27.81 (ft)<br>21.12 (ft)                                         |
| Length of Water Column (LWC)<br>Volume of Water in Well (VW)                                | <u>6:69</u> (ft) (LWC=D-DTW)<br><u>1,0704</u> gal Conversion<br>Factor 16                       |
| Volume of Purge (VTP) (VTP = VW x 3)                                                        | <u>3.2112 (gal)</u>                                                                             |
|                                                                                             |                                                                                                 |

| At Time of Measurements:                     |                            |
|----------------------------------------------|----------------------------|
| Color CLEAR                                  | Odor NONE                  |
| Total volume purged 1.872 GAL                | Duration of purging 36 MIN |
| Purging method GEOPUMP                       | Did well go dry?NO         |
| Weather conditions <u>SUNNY</u> , COLD, CALM |                            |
| /                                            |                            |

|                        |                                         | `                   |         |
|------------------------|-----------------------------------------|---------------------|---------|
| Pump Serial Number     | 5008-40                                 |                     |         |
| Water Quality Monito   | r Serial Number <u>MO15-05</u>          |                     |         |
| Analyses Requested     | 8 spec, Sr-90, 14-3                     |                     | •       |
|                        |                                         |                     |         |
| Previous Final Reading | s: pH_?? Cond as 27 Turb ars DO 3.9 Ter | mp 8.44 ORP 140 DTV | N 21.05 |
|                        | Flow 250 3H 831                         |                     | •       |

Γ

#### Form 2 Sample Round MARCH 2010 MWIOHA Current Readings DTW D.0 Temp ORP Comments Time Turb Cond pН (°C) (NTU) (min) (mv) (feet) mS/cm (mg/L)+/-10% +/-1E +/-10 mv +/- 0.1 +/- 3% +/- 10% Purge @ 260 ML/min BEGIN NA <10NTU 1500 std.unit PURGE 21.15 9.2 5 ,407 5.04 0,00 109 105 6.06 3,20 21.15 1510 10 9.2 ,405 0,00 6.06 111 15 1515 606 ,403 2.22 0,00 9.2 21,15 112 20 604 1.39 0.00 2),15 1520 9.1 ,402 118 9.1 21.15 1525 25 6.01 ,402 1.10 119 0,00 9.1 119 21.15 30 .402 1.11 1530 0.00 6.01 9.2 21.15 35 0,00 119 1535 6.01 ,402 1.08 40 COLLECT SAMPLES DUP, MS. MSD. 1536 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

#### WATER QUALITY PARAMETERS

| GROUND WATER SAI                                                  | MPLING FIELD LOG           |
|-------------------------------------------------------------------|----------------------------|
| Form                                                              | <u>n 1</u>                 |
| Sample Location <u>MW105B</u> Well De                             | esignation MW105B          |
| Sampling Team RENE AUBE Sample                                    | Period MARCH 2010          |
| Date 3/4/10 Time                                                  | 1131 (SAMPLE)              |
| START @ 0845                                                      | END & 1230                 |
|                                                                   | Depth to Mid Screen(ft)    |
| Measuring Point TOR                                               | Diameter of Well 2, O (in) |
| Well Depth (from measuring point) (D)                             | <u>75,49</u> (ft)          |
| Depth to water (DTW)                                              | <u>24,14</u> (ft)          |
| Length of Water Column (LWC)                                      | 51,35 (ft) (LWC=D-DTW)     |
| Volume of Water in Well (VW)                                      | 8,216 gal Conversion       |
|                                                                   | Factor <u>.16</u>          |
| Volume of Purge (VTP) (VTP = VW x 3)                              | 24.648 (gal)               |
|                                                                   |                            |
|                                                                   |                            |
|                                                                   |                            |
|                                                                   |                            |
| At time of Measurements: $A = A = A = A = A = A = A = A = A = A $ | Odor NONE                  |
| Color (1FAL                                                       | 0001 70000                 |

| NEAD Odor NONE                                                                        |
|---------------------------------------------------------------------------------------|
| Color (LEATIC Odd) JOErce                                                             |
| Total volume purged <u>3.926</u> Duration of purging <u>131 MIN</u>                   |
| Purging method <u>BLADDER PUMP</u> Did well go dry? <u>NO</u>                         |
| Weather conditions <u>SUNNY</u> , COLD, CALM                                          |
|                                                                                       |
|                                                                                       |
|                                                                                       |
| Pump Serial Number S05102                                                             |
| Water Quality Monitor Serial Number                                                   |
| Analyses Requested Spec, Sr. 90, 14-3                                                 |
|                                                                                       |
| Previous Final Readings: pH 261 Conde 612 Turb 5.6 DO and Temp 8.9 ORP - 89 DTW 28.9) |
| Flow 100 3H 3490                                                                      |

#### Form 2 MW105B Sample Round MARCH 2010 Current Readings Comments DTW ORP D.0 Temp Turb Time pН Cond (°C) (NTU) (min) (feet) (mv)mS/cm (mg/L)+/-10 mv +/-10% +/-1E +/- 3% +/- 10% +/- 0.1 Purge @ 100 mL/min BEGIN 0900 NA <10NTU std.unit PUNGE 5 24.92 5.03 7.7 151 5.64 0905 ,500 28.7 135 10 25.43 2,64 7.0 20.2 5.71 .509 0910 43 15 6.6 25,88 24,4 0.97 .524 0915 5.83 20 ,534 6.7 26.22 -21 5.97 29.7 0,00 0920 25 26.3 6.7 -71 26.58 6.16 ,536 0925 0.00 .533 -89 26.84 30 6.7 0930 20,5 6.30 0,00 27:03 35 0,00 6.6 -101 .522 0935 6.47 17,1 6.59 40 6.9 -109 27:28 0940 0,00 ,503 11.0 45 6.65 6.9 27,48 0945 . 491 9.15 0.00 -119 6.9 50 -131 27,60 6.76 0950 6.67 0,00 ,488 55 6,9 ,490 5.38 27.79 0955 0.00 - )41 6.69 60 , 491 4.19 7.0 -14A 27.87 1000 0.00 6.69 6,70 2300 65 3.77 -162 1005 .498 0,00 7.0 70 7.2 28.10 3,15 -)66 1010 0.00 6.71 ,502 75 -169 28.M 7.1 1015 ,506 6.72 3.02 0.00 80 7.3 1020 28,26 2,86 -)72 0.00 6,72 ,509 85 7.3 -175 28,34 1025 6.72 ,511 2,42 6,00 7.3 90 -180 28,41 1030 2.01 0.00 6.72 .516 7.3 95 28.47 1035 -184 ,522 2,00 0.00 6,72 100 1040 ,525 7.2 -187 28,53 2,04 0,00 6.72 1045 105 7.2 -189 28,58 6:73 ,526 2,01 0,00 -190 28.61 110 7.3 6,74 1050 ,529 0,00 2.02 115 7,4 28,65 -191 ,529 0,00 1055 6.76 2.02 7.4 120 0,00 -192 28,68 ,530 2.01 1100 6.75

#### WATER QUALITY PARAMETERS

Page 11 of 40

|      | Form 2                                |                  |        |                                        |                                                                                                                 |          |          |        |                    |
|------|---------------------------------------|------------------|--------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------|----------|--------|--------------------|
|      | Sample Round MARCH 2010 MW105B CONT'D |                  |        |                                        |                                                                                                                 |          |          |        | B CONT'D           |
|      |                                       | •                |        | 27<br>N                                | Current                                                                                                         | Readings |          |        |                    |
| -    | Time                                  | pH               | Cond   | Turb                                   | D.0                                                                                                             | Temp     | ORP      | DTW    | Comments           |
|      | (min)                                 |                  | mS/cm  | (NTU)                                  | (mg/L)                                                                                                          | (-C)     | (mv)     | (feet) |                    |
| •    | 0                                     | +/- 0.1 std.unit | +/- 3% | +/- 10%<br>NA <10NTU                   | +/-10%                                                                                                          | +/- 1 E  | +/-10 mv |        | Purge @ 100 mL/min |
| 1105 | - 5                                   | 6.74             | ,531   | 2,02                                   | 0,00                                                                                                            | 7.4      | -193     | 28,70  |                    |
| 1110 | 10                                    | 6.75             | , 532  | 2,00                                   | 0,00                                                                                                            | 7,5      | -193     | 28.72  |                    |
| 1115 | 15                                    | 6.76             | , 533  | 2,00                                   | 0100                                                                                                            | 7.6      | -193     | 28.73  |                    |
| 1120 | 20                                    | 6.77             | .534   | 2.01                                   | 0,00                                                                                                            | 7.7      | -)94     | 28,74  |                    |
| 1125 | 25                                    | 6:77             | ,535   | 2,00                                   | 0.00                                                                                                            | 7.8      | -194     | 28,74  |                    |
| 1130 | 30                                    | 6.77             | ,534   | 2.01                                   | 0,00                                                                                                            | 7,8      | -195     | 28,74  |                    |
| 1131 | 35                                    | COLLE            | CT SI  | AMPLE                                  | 3                                                                                                               |          |          |        |                    |
| •    | 40                                    |                  |        |                                        |                                                                                                                 |          | -        |        |                    |
|      | 45                                    |                  |        |                                        |                                                                                                                 |          |          |        |                    |
|      | 50                                    |                  |        |                                        | a contraction of the second |          |          |        |                    |
|      | 55                                    |                  | · ·    | -                                      |                                                                                                                 |          |          |        |                    |
|      | 60                                    |                  |        |                                        |                                                                                                                 |          |          |        |                    |
|      | 65                                    |                  |        |                                        |                                                                                                                 |          |          |        |                    |
|      | 70                                    |                  |        |                                        |                                                                                                                 |          |          |        |                    |
| •    | 75                                    |                  |        |                                        |                                                                                                                 |          |          |        |                    |
|      | 80                                    |                  |        | •••••••••••••••••••••••••••••••••••••• |                                                                                                                 |          |          |        | ·                  |
|      | 85                                    |                  |        |                                        |                                                                                                                 |          |          |        |                    |
|      | 90                                    |                  |        |                                        |                                                                                                                 |          |          |        |                    |
|      | 95                                    |                  |        |                                        | · · · ·                                                                                                         |          |          |        |                    |
|      | 100                                   |                  |        |                                        |                                                                                                                 |          |          |        |                    |
|      | 105                                   |                  |        |                                        |                                                                                                                 |          |          |        |                    |
|      | 110                                   |                  |        | -                                      |                                                                                                                 |          |          |        |                    |
|      | 115                                   |                  |        |                                        |                                                                                                                 | ·        |          |        |                    |
|      | 120                                   |                  | -      |                                        |                                                                                                                 |          |          |        |                    |

WATER OUALITY PARAMETERS

| GROUND WA                                             | <u>Form 1</u>                                         |
|-------------------------------------------------------|-------------------------------------------------------|
| Sample Location <u>MW106A</u>                         | Well Designation <u>MWIO6A</u>                        |
| Sampling Team <u>7(ENE AUBE</u><br>Date <u>3/4/10</u> | Sample Period <u>MARCE 2010</u><br>Time 1411 (SAMPLE) |
| START @ 1300                                          | END @ 1455                                            |
|                                                       | Depth to Mid Screen(ft)                               |
| Measuring Point Ton                                   | Diameter of Well $2, $ (in)                           |
| Well Depth (from measuring point) (D)                 | <u>(ft)</u>                                           |
| Depth to water (DTW)                                  | <u> </u>                                              |
| Length of Water Column (LWC)                          | <u>15,64</u> (ft) (LWC=D-DTW)                         |
| Volume of Water in Well (VW)                          | 2,5024 gal Conversion                                 |
|                                                       | Factor, 16                                            |
| Volume of Purge (VTP) (VTP = VW $x$ :                 | 3) $7.5072$ (gal)                                     |
|                                                       |                                                       |
|                                                       |                                                       |
|                                                       |                                                       |
| At Time of Measurements:                              |                                                       |
| Color CLEAR                                           | Odor NONE                                             |
| Total volume purged                                   | Duration of purging 61 MIN                            |
| Purging method GEOPUMP                                | Did well go dry?                                      |
| Weather conditions SUNNY (OLD                         | CALM                                                  |
|                                                       |                                                       |
|                                                       |                                                       |

RP-05 Rev. 3

| Pump Serial Number _   | 5008-40                                                |        |
|------------------------|--------------------------------------------------------|--------|
| Water Quality Monitor  | Serial Number MO15-05                                  |        |
| Analyses Requested     | 8 spec, Sr.90, H-3                                     | •      |
|                        |                                                        |        |
| Previous Final Reading | s: pH_22 Cond and Turb 0.44 DO 5.29 Temp 633 ORP 1 DTV | N_6.86 |
|                        | Flow 100 3H 484                                        | •      |

,

ł

÷

2

|      |                |                     | Y      | WATE                 | For              | <u>m 2</u>   |          |        |                                                                                                                 |  |
|------|----------------|---------------------|--------|----------------------|------------------|--------------|----------|--------|-----------------------------------------------------------------------------------------------------------------|--|
|      | Sample         | Round               | MAR    | CH 20                | 010              |              | .M       | WIO    | 5.4                                                                                                             |  |
| 4    |                | •                   | -      | •                    | Current Readings |              |          |        |                                                                                                                 |  |
|      | Time           | pH                  | Cond   | Turb                 | D.0              | Temp<br>(°C) | ORP      | DTW    | Comments                                                                                                        |  |
|      | (min)          |                     | mS/cm  |                      | (mg/L)           |              | (mv)     | (feet) |                                                                                                                 |  |
| 1310 | BEGIN<br>PURGE | +/- 0.1<br>std.unit | +/- 3% | +/- 10%<br>NA <10NTU | +/-10%           | +/-1E        | +/-10 mv |        | PLIGE@100mymin                                                                                                  |  |
| 1315 | 5              | 5.94                | .327   | 6.74                 | 1.53             | 7.3          | 26       | 7.19   |                                                                                                                 |  |
| 1320 | 10             | 5,84                | , 323  | 6,55                 | 0.03             | 7.)          | 36       | 7.25   |                                                                                                                 |  |
| 1325 | 15             | 5,82                | ,323   | 7.10                 | 0,05             | 7.1          | 40       | 7.30   |                                                                                                                 |  |
| 1330 | 20             | 5,80                | .323   | 4.92                 | 0,00             | 6.9          | 48       | 7.37   |                                                                                                                 |  |
| 1335 | 25             | 5.79                | ,323   | 3,87                 | 0,00             | 6.9          | 52       | 7.44   | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |  |
| 1340 | 30             | 5.80                | .322   | 3.03                 | 0.00             | 7.0          | 58       | 7.49   |                                                                                                                 |  |
| 1345 | 35             | 5.79                | ,321   | 2.39                 | 0,00             | 7.0          | 67       | 7,53   |                                                                                                                 |  |
| 1350 | 40             | 5.79                | ,320   | 2.39                 | 0,00             | 7.0          | 74       | 7.57   |                                                                                                                 |  |
| 1355 | 45             | 5,79                | ,319   | 2,40                 | 0,00             | 7.0          | 79       | 7.60   |                                                                                                                 |  |
| 1400 | 50             | 5.79                | , 319  | 2,38                 | 0,00             | 7.0          | 83       | 7.61   |                                                                                                                 |  |
| 1405 | 55             | 5,80                | ,320   | 2.39                 | 0,00             | 7.0          | 87       | 7,61   |                                                                                                                 |  |
| 1410 | 60             | 5.79                | , 319  | 2.40                 | 0.00             | 7.0          | 90       | 7.61   |                                                                                                                 |  |
| 1411 | 65             | COLLE               | CT SA  | MPLES                |                  |              |          | -      |                                                                                                                 |  |
|      | 70             |                     |        |                      |                  |              |          |        |                                                                                                                 |  |
| •    | 75             |                     |        |                      |                  |              |          |        |                                                                                                                 |  |
|      | 80             |                     |        |                      |                  |              |          |        |                                                                                                                 |  |
|      | 85             |                     |        |                      |                  |              |          |        |                                                                                                                 |  |
|      | 90             |                     |        | ·                    |                  |              |          |        |                                                                                                                 |  |
|      | 95             | 1                   |        |                      |                  |              |          |        |                                                                                                                 |  |
|      | 100            |                     |        |                      |                  |              |          |        |                                                                                                                 |  |
|      | 105            |                     |        |                      |                  | -            |          |        |                                                                                                                 |  |
|      | 110            |                     |        |                      |                  |              |          |        |                                                                                                                 |  |
|      | 115            |                     |        |                      |                  |              |          |        |                                                                                                                 |  |
|      | 120            |                     |        | · ·                  |                  |              |          |        |                                                                                                                 |  |

#### WATER OUALITY PARAMETERS

| ISFSI Radiation Protection                                                                                                                                                                         |                                                                                                                    | RP-05<br>Rev. 3                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| GROUND WAT                                                                                                                                                                                         | Form 1<br>Well Designation MW-10)                                                                                  |                                                          |
| Sample Location Marco Nangleona                                                                                                                                                                    | Sample Period March 2010                                                                                           | agamati                                                  |
| Date 3.4-10                                                                                                                                                                                        | Time_0735                                                                                                          |                                                          |
| Measuring Point <u>Tok</u><br>Well Depth (from measuring point) (D)<br>Depth to water (DTW)<br>Length of Water Column (LWC)<br>Volume of Water in Well (VW)<br>Volume of Purge (VTP) (VTP = VW x 3 | Depth to Mid Screen<br>Diameter of Well $2.4$<br>42.80<br>23.32<br>13.98 (ft) (LWC<br>an 56 3.04 gal<br>9.12 (gal) | (ft)<br>(ft)<br>(ft)<br>C=D-DTW)<br>Conversion<br>Factor |

| At Time of Measurements:                       | Odor None                                                |
|------------------------------------------------|----------------------------------------------------------|
| Total volume purged 3.88 gal                   | Duration of purging <u>47 min</u><br>Did well go dry? No |
| Weather conditions <u>54mmy</u> , breezy, 35°F |                                                          |

| Pump Serial Number     | Bladder Sost-03                                                                                          |                   |
|------------------------|----------------------------------------------------------------------------------------------------------|-------------------|
| Water Quality Monito   | or Serial Number Harber 41.22 Mars-09, HACH 21009                                                        | mo24-20           |
| Analyses Requested _   | Y-spec, Sr.90, H-3                                                                                       | •                 |
|                        |                                                                                                          |                   |
| Previous Final Reading | gs: pH <u>8.48</u> Cond <u>a.492</u> Turb <u>6.61</u> DO <u>1.77</u> Temp <u>7.60</u> ORP <u>7.67</u> DT | :W_ <u>29.</u> 93 |

Flow 100 3H\_21,300

#### RP-05 Rev. 3

#### WATER QUALITY PARAMETERS

|        |               |                     | Υ.<br>Υ       |                      | For           | <u>rm 2</u>  |             | m             | 10-1070 | *                                                                                                              |
|--------|---------------|---------------------|---------------|----------------------|---------------|--------------|-------------|---------------|---------|----------------------------------------------------------------------------------------------------------------|
|        | Sample        | Round               | March         | 2010                 |               |              |             |               |         |                                                                                                                |
|        | •             | - I                 | 0             |                      | Current       | Readings     |             |               |         |                                                                                                                |
|        | Time<br>(min) | pН                  | Cond<br>mS/cm | Turb<br>(NTU)        | D.O<br>(mg/L) | Temp<br>(°C) | ORP<br>(mv) | DTW<br>(feet) | Cor     | nments                                                                                                         |
| 3-4-10 | 0 mi<br>2240  | +/- 0.1<br>std.unit | +/- 3%        | +/- 10%<br>NA <10NTU | +/-10%        | +/- 1 E      | +/-10 mv    | 23.82         | Page at | 100 ml/min                                                                                                     |
| 0845   | 5 000         | 6.07                | 0.344         | 17.4                 | 8.47          | 2.1          | 12          | 25.51         |         |                                                                                                                |
| 0750   | 10 00         | 6.15                | 0.343         | 12.6                 | 2.71          | 7.2          | 12          | 25.97         |         |                                                                                                                |
| 0855   | 15            | 6-21                | 0.342         | 7.97                 | 2.22          | 2.3          | -3          | 26.53         |         |                                                                                                                |
| 0900   | 20            | 6.24                | 0-341         | 6.05                 | 6.80          | 2.4          | - 18        | 27.00         |         |                                                                                                                |
| 0905   | 25            | 6.27                | 0-342         | 6.01                 | 6.49          | 2.5          | -31         | 27.40         |         |                                                                                                                |
| 0910   | 30            | 6.29                | 0.348         | 6.23                 | 6.27          | 7.3          | -37         | 27.71         |         | aan ahaa ahaa ahaa ahaa ahaa ahaa ahaa                                                                         |
| 0915   | 35            | 6-31                | 0.352         | 5.62                 | 6.00          | 7.3          | -41         | 27.98         |         | -                                                                                                              |
| 0920   | 40            | 6.34                | 0-354         | 4.82                 | 5.77          | 2.4          | -46         | 28.20         |         |                                                                                                                |
| 0925   | 45            | 6.34                | 0-356         | 4.36                 | NS-45         | 7.4          | -52         | 28.40         |         |                                                                                                                |
| 0930   | 50            | 6.35                | 0-355         | 4.40                 | 5.40          | 7.4          | -56         | 28.55         |         |                                                                                                                |
| 0935   | 55            | 6.37                | 0.356         | 4.27                 | 5.26          | 7.4          | - 58        | 28.71         |         |                                                                                                                |
| 0940   | 60            | 6.38                | 0.357         | 3.60                 | 5.10          | 7.6          | -59         | 28.83         |         |                                                                                                                |
| 0945   | 65            | 6.39                | 0-35)         | 4.03                 | 5.02          | 2.5          | -59         | 28.94         |         |                                                                                                                |
| 0950   | 70            | 6.39                | 0.357         | 3.73                 | 4.93          | 2.5          | -60         | 29.03         |         |                                                                                                                |
| 0955   | 75            | 640                 | 0.357         | 4.31                 | 4.88          | 7.3          | -61         | 29.12         | · · ·   |                                                                                                                |
| 1000   | 80            | 6.41                | 0.35)         | 4.98                 | 4.73          | 2.7          | -62         | 29.20         |         |                                                                                                                |
| 1005   | 85            | 6.42                | 0-356         | 4.31                 | 4.69          | 7.6          | -63         | 29.25         |         |                                                                                                                |
| 1010   | 90            | 643                 | 0.355         | 4.28                 | 4.63          | 7.5          | -64         | 29.31         |         |                                                                                                                |
| 1015   | 95            | 6.43                | 0.355         | 4.48                 | 4.61          | 7.4          | -65         | 29.36         |         |                                                                                                                |
| 1020   | 100           | 6.44                | 0-355         | 3.81                 | 4.54          | 2.5          | -65         | 29.43         |         |                                                                                                                |
| 1025   | 105           | 6.45                | 0-355         | 4.01                 | 4.49          | 7.5          | -6)         | 29.49         |         | an de la constant de |
| 1030   | 110           | 6.45                | 0.355         | 3.77                 | 4.43          | 2.6          | -6)         | 29.53         |         | n di sekono sense se sense de la sense de la sense de se                   |
| 1035   | 115           | 6.45                | 0:356         | 3.13                 | 4.41          | 24           | -6)         | 29.5)         |         | NAME OF CONTRACTOR OF CONT |
| 1040   | 120           | 6.45                | 0.355         | 2.98                 | 4.36          | 2.5          | -68         | 29.60         | V       | ,                                                                                                              |

Page 11 of 40

# RP-05

| ĸ  | ф. | ς, |   |   |
|----|----|----|---|---|
| 77 | v  | ¥  | ٠ | • |
| -  | -  | -  |   |   |
|    |    |    |   |   |

| 5 | W | ~ | İ | Ò | 7 | 4 |
|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |

|        | Sample        | Round               | March         | 2010                 |               |              |                                            |                                                |                    |
|--------|---------------|---------------------|---------------|----------------------|---------------|--------------|--------------------------------------------|------------------------------------------------|--------------------|
|        |               |                     |               |                      | Current       | Readings     | · · · ·                                    |                                                |                    |
| 3.4.10 | Time<br>(min) | pH                  | Cond<br>mS/cm | Turb<br>(NTU)        | D.O<br>(mg/L) | Temp<br>(°C) | ORP<br>(mv)                                | DTW<br>(feet)                                  | Comments           |
|        | 0             | +/- 0.1<br>std.unit | +/- 3%        | +/- 10%<br>NA <10NTU | +/-10%        | +/- 1 E      | +/-10 mv                                   |                                                | Purze at 100 m /mm |
| 1045   | 125           | 646                 | 0,355         | 2.74                 | 4.29          | 2.8          | -68                                        | 29.63                                          |                    |
| 1050   | 130           | 6.47                | 0.354         | 3.01                 | 4.28          | 7.7          | -68                                        | 29.66                                          |                    |
| 1055   | 135           | 648                 | 0.355         | 2.86                 | 4.23          | 7.)          | -68                                        | 29.69                                          |                    |
| 1100   | 140           | 647                 | 0-355         | 2.54                 | 4.24          | 7.6          | -68                                        | 29.71                                          |                    |
| 1105   | 145           | 6.4)                | 0-355         | 2.61                 | 4.24          | 7.8          | -68                                        | 29.70                                          |                    |
| (oil   | +50           | well                | stable        | Collect              | Samples       |              | and the second second second second second | an der Alagen Allers of the grant of the large |                    |
| 1205   | 155-<br>Mu    | Samp                | ling go       | mplete.              | Well S        | ecure        | 4                                          | 100 Shi 200300 Shi kategari                    |                    |

| <b>ISFSI</b> Radiation H | Protection |
|--------------------------|------------|
|--------------------------|------------|

Γ

| GROUND WAT                                                                                                                                           | <u>TER SAMPLING FIELD LOG</u><br><u>Form 1</u>                                                          |                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Sample Location <u>MW-1000</u><br>Sampling Team <u>M. Van Noordennen</u><br>Date <u>3-2-10</u>                                                       | Well Designation MW-10)<br>Sample Period March 2010<br>Time 1435 - 1720                                 |                                                                          |
| Measuring Point TOR<br>Well Depth (from measuring point) (D)<br>Depth to water (DTW)<br>Length of Water Column (LWC)<br>Volume of Water in Well (VW) | Depth to Mid Screen<br>Diameter of Well $2.0$<br>91.50<br>$42.3\delta$<br>48.8 (ft) (LWC=<br>2.81 gal C | (ft)<br>(in)<br>(ft)<br>(ft)<br>=D-DTW)<br>conversion<br>factor 0.16     |
| Volume of Purge (VTP) (VTP = VW x 3                                                                                                                  | 3) <u>23.43 (gal)</u>                                                                                   |                                                                          |
|                                                                                                                                                      |                                                                                                         | <u>unos de constante de la constante de la constante de la constante</u> |

| At Time of Measurements:                                          | Odor Slight organic                                                                        |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Total volume purged 1.90 gal<br>Purging method Rladder - Low flow | Duration of purging $\mathcal{Da}_{M,N}$ .<br>Did well go dry? $\mathcal{N}_{\mathcal{O}}$ |
| Weather conditions <u>Cloudy</u> , 35°F                           |                                                                                            |

| Pump Serial Number 5051-03                                                 |
|----------------------------------------------------------------------------|
| Water Quality Monitor Serial Number Horby U.22 Mars-09, HACH 2100P Mo24-20 |
| Analyses Requested 1-Spec, Sc-90, H-3                                      |
|                                                                            |
| DTW 45.68                                                                  |
| Previous Final Readings: pH Cond Turb DO Temp Ord DT Turb                  |

Flow 100 3H 8210

RP-05 Rev. 3

.

#### WATER QUALITY PARAMETERS MW.1070 Form 2 March 2010 Sample Round Current Readings ORP DTW Time Cond Turb D.0 Temp Comments pH (min) (NTU) (°C) 3210 (mg/L) (mv) (feet) mS/cm +/-10% +/-10 mv +/- 0.1 +/- 3% +/- 10% +/- 1 E 0 Purge at lod Mining 150) 42.70 NA <10NTU std.unit 5 1512 6.40 8.3 44.05 0.304 6.85 6.85 43 10 151) 44.06 8.25 6.10 6.53 0.306 8.1 -44 1522 15 0.299 12.) 44.43 6.59 5.38 28 -53 20 152) 0.296 10.9 8.2 -61 44.8) 6.64 4.84 25 -)) 0.295 45.1) 1532 6.67 14.2 4.57 8.3 30 8:3 153) 0.296 12.5 -89 45.45 6.69 4.43 35 8.2 1542 11.) 0.302 4.35 6.20 -100 45.51 154) 40 11.6 8.2 45.61 0.30) 6.20 4.26 -10) 45 1552 -116 8.3 45.78 4.18 7.2) 6-315 6.70 50 155) 8.3 45.92 8.29 0.325 4.13 6.70 -122 55 1602 83 45.9) 4.09 0.333 6.73 670 -122 1607 60 46.05 0.33) 4.07 8.2 6.69 4.79 -122 65 637 1612 6.68 5342 4.06 8.0 -122 46.11 70 3.81 28 46.07 1617 6.68 0.344 4.05 -123 75 M) Collect sample) 1619. SOM 1720 Sampling complete -Well secure 85 90 95 100 105 110 115 120

| ISFSI Radiation Protection                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                               |                                                           | RP-05<br>Rev. 3                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------|
| GROUND WATER SA<br>ForSample LocationMW-10)ESampling TeamM- Van NoordennumDate3-3-10Time                                                                                                                                                                                                                                                                                                                                                                                                 | MPLING FIELD L<br>m 1<br>Designation MW 10<br>e Period March 7<br>1450 - 1710 | <u>OG</u><br>07 <i>E</i><br>1010                          |                                                                     |
| Measuring Point TOR<br>Well Depth (from measuring point) (D)<br>Depth to water (DTW)<br>Length of Water Column (LWC)<br>Volume of Water in Well (VW)<br>Volume of Purge (VTP) (VTP = VW x 3)                                                                                                                                                                                                                                                                                             | Depth to Mid Scree<br>Diameter of<br>32.28<br>5.16<br>15.48                   | en<br>Well2<br>59.90<br>27.62<br>(ft) (LW<br>gal<br>(gal) | (ft)<br>(in)<br>(ft)<br>(ft)<br>C=D-DTW)<br>Conversion<br>Factor(6) |
| At Time of Measurements:<br>Color<br>Total volume purged<br>Purging method Low Flaw bladder<br>Weather conditions<br>Weather conditions<br>Weather conditions<br>Weather conditions<br>Weather conditions<br>Market Color<br>Weather conditions<br>Market Color<br>Weather conditions<br>Clear<br>Clear<br>Total volume purged<br>Not Clear<br>Purging method Low Flaw bladder<br>Weather conditions<br>Clear<br>Clear<br>Clear<br>Not Clear<br>Weather conditions<br>Summy, Windy, 35 F | Odor <u>Slight</u><br>Duration of purg<br>Did well go dry?                    | organic<br>ing 22<br>No                                   | min                                                                 |

Pump Serial Number <u>Dradder</u> <u>Sost-05</u> Water Quality Monitor Serial Number <u>Horba U-22</u> Mois-09, <u>HACH 21609</u> Mo24-20 Analyses Requested <u>Y Spec</u>, <u>Sc-90</u>, <u>14-3</u>

Previous Final Readings: pH 8.02 Cond 0.202 Turb > 34 DO 0.00 Temp > > ORP - 204 DTW 28.44 Flow 100 3H 4/6 50

|          |               |                     |         | WATE                 | R QUALIT | Y PARA       | METER                                                                                                           | <u>S</u>                                | Mil us       | . The second sec |
|----------|---------------|---------------------|---------|----------------------|----------|--------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | n. 1.         | D                   |         | <u>^</u>             | For      | <u>m 2</u>   |                                                                                                                 | 910411111111111111111111111111111111111 | 1100-10)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | Sample        | Kound               | March   | 2010                 | -        |              | •                                                                                                               |                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | •             |                     |         |                      | Current  | Readings     | · .                                                                                                             | · · · · · · · · · · · · · · · · · · ·   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 2.10   | Time<br>(min) | pH                  | Cond    | Turb<br>(NTU)        | D.0      | Temp<br>(°C) | ORP                                                                                                             | DTW                                     | Cor          | nments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| J. J. V. |               |                     | mS/cm   | 100/                 | (mg/L)   | 1/15         | (mv)                                                                                                            | (leet)                                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1500     | U             | +/- 0.1<br>std.unit | +/- 3%  | +/- 10%<br>NA <10NTU | +/-10%0  |              | -7-10 mV                                                                                                        | 27.62                                   | Phose est    | 100 M /min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1505     | 5             | 6.36                | 0.197   | 10-3                 | 6.70     | 2.1          | 114                                                                                                             | 28.17                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1510     | 10            | 643                 | 0-199   | 6.02                 | 4.69     | 2.)          | 25                                                                                                              | 28.36                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1515     | 15            | 6.46                | 0-200   | 5.85                 | 4.26     | 2.5          | -26                                                                                                             | 28.35                                   |              | <i>9</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1520     | 20            | 6.53                | 0.199   | 5.19                 | 4.05     | ).5          | -54                                                                                                             | 28.47                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1525     | 25            | 658                 | 0.199   | 3.62                 | 3.96     | 7.6          | -72                                                                                                             | 28.52                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1530     | 30            | 6.61                | 0.199   | 2.95                 | 3.91     | 7.6          | -90                                                                                                             | 28.52                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1535     | 35            | 6.63                | 0-199   | 3.76                 | 3.90     | 2.4          | - 88                                                                                                            | 28.55                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1540     | 40            | 6.66                | 0.200   | 2.72                 | 3.91     | 7.2          | - 93                                                                                                            | 29.55                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1545     | 45            | 6.68                | 0-200   | 1.68                 | 3.89     | 2.8          | -98                                                                                                             | 28.55                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1550     | 50            | 600                 | 0.199   | 1.55                 | 3.87     | 6.9          | -103                                                                                                            | 28.57                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1555     | 55            | 672                 | 0-199   | 1.32                 | 3.86     | 6-8          | -107                                                                                                            | 28.57                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1600     | 60            | 6.74                | 0.199   | 1.67                 | 3:84     | 6.7          | -109                                                                                                            | 28-61                                   |              | NAME AND ADDRESS ADDRES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1605     | 65            | 675                 | 0.199   | 1.43                 | 3.82     | 6.8          | -111                                                                                                            | 28.61                                   |              | agannangunya dinama Mésakira kanda sakirangan punangungan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1610     | 70            | 6.77                | 0-199   | 1.03                 | 3.80     | 6.6          | -113                                                                                                            | 28.61                                   | $\checkmark$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 162      | 75 W          | Colle               | ct san  | nples -              |          |              | nan dago naga tara kana dago na k |                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 80 april      | Samp                | live co | molete.              | well s   | ecure        | Manager (1997)                                                                                                  |                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 85            | •                   |         |                      |          |              |                                                                                                                 |                                         |              | <b>Na Mana</b> and a subscription of the subscription of                                                                                                                                                                                                                                       |
|          | 90            |                     |         |                      |          |              |                                                                                                                 |                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 95            |                     |         |                      |          |              |                                                                                                                 |                                         |              | ananakan ora-aray dahadahiy yokan yokan se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| И,       | 100           |                     |         |                      |          |              |                                                                                                                 |                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 105           |                     |         |                      |          |              |                                                                                                                 | .<br>                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 110           |                     |         |                      |          |              |                                                                                                                 |                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 115           |                     |         |                      |          |              |                                                                                                                 |                                         |              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | 120           |                     |         |                      |          | -            |                                                                                                                 |                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| GROUND WAT                            | FER SAMPLING FIELD LOG          |
|---------------------------------------|---------------------------------|
|                                       | Form 1                          |
| Sample Location MW107F                | Well Designation <u>MW107F</u>  |
| Sampling Team RENE AUBE               | Sample Period <u>MARCH 2010</u> |
| Date 3/3/10                           | Time 1641 (SAMPLE)              |
| START & 1440                          | END @ 1745                      |
|                                       | Depth to Mid Screen(ft)         |
| Measuring Point TOR                   | Diameter of Well 2.0 (in)       |
| Well Denth (from measuring point) (D) | <u> </u>                        |
| Depth to water (DTW)                  | <u>27,98</u> (ft)               |
| Length of Water Column (LWC)          | 28.63 (ft) (LWC=D-DTW)          |
| Volume of Water in Well (VW)          | 4,5808 gal Conversion           |
|                                       | Factor <u>, i6</u>              |
| Volume of Purge (VTP) (VTP = VW $x$   | 3) <u>13.7424 (gal)</u>         |
|                                       |                                 |
|                                       |                                 |
|                                       |                                 |
| At Time of Measurements.              |                                 |
| At time of Measurements.              | Odor NONE                       |
| Total violume purged 2,496            | Duration of purging 96 MIN      |
| Pursing method Care Put MP B          | LADDER Did well go dry?         |
| Weather conditions Full OVERCAS       | ST. COLD, SNOWING LIGHTLY.      |
| weather conditions / cicc - voice / - |                                 |
|                                       |                                 |
|                                       |                                 |
| SAOS-                                 | 40 505102                       |
| Pump Serial Number                    | M015-05                         |
| Water Quality Monitor Serial Number   | 9× H-3                          |
| Analyses Requested                    | - 10, 11 0                      |
|                                       |                                 |

Previous Final Readings: pH<sup>>95</sup> Cond <sup>0.23</sup>/<sub>2</sub>Turb <sup>1.59</sup> DO <u>0.00</u> Temp <del>8.5</del> ORP <u>19</u> DTW <u>28</u> 14 Flow <u>100</u> <sup>3</sup>H <u>81</u>50

|      |                |                       | ,      | WATE                 | <u>R QUALI 1</u><br>For | <u>Y PARAI</u><br>m 2 | METERS   | 2      |                                       |  |
|------|----------------|-----------------------|--------|----------------------|-------------------------|-----------------------|----------|--------|---------------------------------------|--|
| - 1  | Sample         | Round                 | MAR    | 2CH 2                | 2010                    |                       | Mu       | 1107   |                                       |  |
|      |                |                       | •      |                      | Current Readings        |                       |          |        |                                       |  |
|      | Time           | pН                    | Cond   | Turb                 | D.O                     | Temp                  | ORP      | DTW    | Comments                              |  |
|      | (min)          |                       | mS/cm  |                      | (mg/L)                  |                       | (mv)     | (feet) |                                       |  |
| 1505 | BEGIN<br>AIRGE | +/- 0.1<br>* std.unit | +/- 3% | +/- 10%<br>NA <10NTU | +/-10%                  | +/- 1 E               | +/-10 mv |        | Purge @ 100 ML/min                    |  |
| 1510 | 5              | 7.00                  | ,205   | 9,33                 | 4.81                    | 7.0                   | 181      | 28,20  | )<br>                                 |  |
| 1515 | 10             | 7.00                  | ,207   | 7,87                 | 3.98                    | 7.3                   | 172      | 28,36  | · · · · · · · · · · · · · · · · · · · |  |
| 1520 | 15             | 6.99                  | ,213   | 7.19                 | 0.88                    | 7.9                   | 159      | 28,46  |                                       |  |
| 1525 | 20             | 7.00                  | ,215   | 6.57                 | 0,00                    | 8.3                   | 134      | 28,50  | <b>)</b>                              |  |
| 1530 | 25             | 6.99                  | .218   | 5,89                 | 0,00                    | 8.3                   | 75       | 28.53  |                                       |  |
| 1535 | 30             | 6.98                  | .219   | 5.14                 | 0,00                    | 8.2                   | 35       | 28,55  | e                                     |  |
| 1540 | 35             | 6.99                  | . 219  | 4.02                 | 0,00                    | 8.2                   | 3        | 28.57  | 6<br>9                                |  |
| 1545 | 40             | 6,98                  | ,220   | 3.17                 | 0,00                    | 8.2                   | -22      | 28,59  |                                       |  |
| 1550 | 45             | 6.99                  | . 221  | 2.95                 | 0,00                    | 8.1                   | - 40     | 28.61  |                                       |  |
| 1555 | 50             | 6,99                  | ,223   | 2.86                 | 0.00                    | 8,0                   | -50      | 28.62  |                                       |  |
| 1600 | 55             | 6,98                  | .225   | 2.66                 | 000                     | 8.1                   | -61      | 28.63  |                                       |  |
| 1605 | - 60           | 6,97                  | ,227   | 2.54                 | 0,00                    | 8.0                   | -70      | 28:64  |                                       |  |
| 1610 | 65             | 6.97                  | .229   | 2.51                 | 0.00                    | 8.0                   | - 75     | 28:65  |                                       |  |
| 1615 | - 70           | 6.97                  | ,230   | 2.47                 | 0,00                    | 7.9                   | -79      | 28,66  |                                       |  |
| 1620 | 75             | 6,97                  | .231   | 2.40                 | 0.00                    | 7.9                   | -85      | 28.67  |                                       |  |
| 1625 | 80             | 6.96                  | ,232   | 2.38                 | 0,00                    | 7.9                   | -89      | 28.68  |                                       |  |
| 1630 | 85             | 6.95                  | ,232   | 2,35                 | 0.00                    | 7.9                   | -92      | 28.69  |                                       |  |
| 1635 | - 90           | 6,96                  | ,233   | 2.36                 | 0.00                    | 7.8                   | -95      | 28,69  |                                       |  |
| 1640 | 95             | 6.95                  | ,233   | 2.35                 | 0.00                    | 7.8                   | -98      | 28.69  |                                       |  |
| K41  | 100            | COLLE                 | CT SA  | MPLE.                | \$                      |                       |          |        |                                       |  |
|      | 105            |                       |        |                      | -                       |                       |          |        |                                       |  |
|      | 110            |                       |        |                      |                         |                       |          |        |                                       |  |
|      | 115            | · · ·                 |        |                      |                         |                       |          |        |                                       |  |
|      | 120            |                       |        |                      |                         |                       |          |        |                                       |  |

| FSI Radiation Protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RP-05<br>Rev. 3                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| GROUND WATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R SAMPLING FIELD LOG              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Form 1                            |
| mple Location <u>SP-1</u> W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vell Designation SP-1             |
| mpling Team M. Van Naarlennen Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ample Period March 2610           |
| nte <u>3-3-10</u> Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ime_0830-2840                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Depth to Mid Screen(ft)           |
| Measuring Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Diameter of Well(in)              |
| Well Depth (from measuring point) (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ft                               |
| Depth to water (DTW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (ft                               |
| Length of Water Column (LWC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (ft) (LWC=D-DTW)                  |
| Volume of Water in Well (VW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gal Conversion                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A Factor                          |
| Volume of Purge (VTP) (VTP = VW x 3).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (gal)                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |
| At Time of Measurements:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |
| Color Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Odor None                         |
| Fotal volume purged N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Duration of purging N/A           |
| Purging method $N/A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Did well go dry? NA               |
| Weather conditions SNAWY, 35°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |
| Weather conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |
| Pump Soriel Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |
| Water Quality Monitor Serial Number Harit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~ 4.22 MOIS-09 HACH 2100P MO24-20 |
| Applying Requested VAC metals X-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | arec. 56-90. H-3                  |
| maryses requested <u>we provide the provident of the provid</u> |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |

3-3-10

|               |                     |               | <u>WATE</u>          | <u>R QUALIT</u><br>For | rm 2         | MELERS      | 2             | SP-1     |
|---------------|---------------------|---------------|----------------------|------------------------|--------------|-------------|---------------|----------|
| Sample        | Round               | March         | 2010                 | -                      |              |             |               |          |
|               | · ·                 | •             |                      | Current                | Readings     |             |               |          |
| Time<br>(min) | рН                  | Cond<br>mS/cm | Turb<br>(NTU)        | D.O<br>(mg/L)          | Temp<br>(°C) | ORP<br>(mv) | DTW<br>(feet) | Comments |
| 0<br>Mond     | +/- 0.1<br>std.unit | +/- 3%        | +/- 10%<br>NA <10NTU | +/-10%                 | +/- 1 E      | +/-10 mv    |               |          |
| 8 0840        | 5.87                | 0344          | 4.44                 | 17.49                  | 6.2          | 182         | NA            |          |
| 10            |                     |               |                      |                        |              |             |               | · · ·    |
| 15            |                     |               |                      |                        |              |             |               |          |
| 20            |                     |               |                      |                        |              |             |               |          |
| 25            |                     |               | -                    |                        |              |             |               |          |
| 30            |                     |               |                      |                        |              |             |               |          |
| 35            |                     |               |                      |                        |              |             |               |          |
| 40            |                     |               |                      |                        | 1            |             |               |          |
| 45            |                     |               |                      |                        |              |             |               |          |
| 50            |                     |               |                      |                        |              | ·           |               |          |
| 55            |                     |               | 1                    | -                      |              | 7           |               |          |
| 60            |                     |               |                      | · · ·                  |              |             |               |          |
| 65            |                     |               |                      |                        |              |             |               |          |
| 70            |                     |               |                      |                        |              |             |               |          |
| 75            |                     |               | · ·                  |                        |              |             |               |          |
| 80            |                     |               |                      |                        |              |             |               |          |
| 85            |                     |               |                      |                        |              |             |               |          |
| 90            |                     |               |                      |                        |              |             |               |          |
| 95            |                     |               |                      |                        |              |             |               |          |
| 100           |                     |               |                      |                        |              |             |               |          |
| 105           |                     |               |                      | ·                      |              |             |               |          |
| 110           |                     |               |                      |                        | 1            |             |               |          |
| 115           |                     |               | -                    |                        |              |             |               |          |
| 120           |                     |               |                      |                        |              |             |               |          |

| SFSI Radiation Protection              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | RP-05<br>Rev. 3                                                                                                 |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------|
| GROUND WA                              | TER SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MPLING FIELD LOG               |                                                                                                                 |
|                                        | <u>m 1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                                                                                 |
| Sample Location SUS-1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                 |
| Sampling Team M. Van Noordenken        | _Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Period March 2010              |                                                                                                                 |
| Date 3-3-10                            | Time_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0945-1010                      |                                                                                                                 |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                 |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depth to Mid Screen            | (ft)                                                                                                            |
| Measuring Point                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Diameter of Well               | (in)                                                                                                            |
| Well Depth (from measuring point) (D)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | (ft)                                                                                                            |
| Depth to water (DTW)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | (ft)                                                                                                            |
| Length of Water Column (LWC)           | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (ft) (I                        | LWC=D-DTW)                                                                                                      |
| Volume of Water in Well (VW)           | $-\lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gal                            | Conversion                                                                                                      |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | Factor                                                                                                          |
| Volume of Purge (VTP) (VTP = VW x 1    | 3).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (gal)                          |                                                                                                                 |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                 |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | ne na                                                                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | n na mar an an an an Anna ann ann ann ann ann an                                                                |
| At Time of Measurements:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                 |
| Color Clear                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Odor Clight organiz            | 9<br>                                                                                                           |
| Total volume purged N/A                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Duration of purging $\sqrt{1}$ | 1                                                                                                               |
| Purging method NM                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Did well go dry?               |                                                                                                                 |
| Weather conditions Snowy, 35 cf        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                 |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                 |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | an a                                                                        |
|                                        | Han Addition and a state of the |                                | An de la desemblemente en title de set agent en tel de set and de s |
| Pump Serial Number                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                 |
| Water Quality Monitor Serial Number H  | orbe U.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22 mois-09, HACH 2100 f        | mo14-20                                                                                                         |
| Analyses Requested VOC, CN, Sou, NO    | 3.05,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ros, alkalmity, coo, me        | tals                                                                                                            |
|                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                                                                                                 |
| Previous Final Readings: nH 52)Cond 00 | DTurb Le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12 DO 13/3 Temp 1.33 ORP 232   | DTW                                                                                                             |
| Flow <sup>3</sup> H -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | •                                                                                                               |

|                  |                                       |               | WATE                                                                                                           | <u>For</u>         | <u>Y PAKA</u><br>m 2 | MELERS      | <u></u>       | 54.1                                                                                           |
|------------------|---------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------|--------------------|----------------------|-------------|---------------|------------------------------------------------------------------------------------------------|
| Sample           | Round                                 | March         | 1010                                                                                                           | 101                |                      |             |               |                                                                                                |
| Current Readings |                                       |               |                                                                                                                |                    |                      |             |               |                                                                                                |
| Time<br>(min)    | pH                                    | Cond<br>mS/cm | Turb<br>(NTU)                                                                                                  | D.O<br>(mg/L)      | Temp<br>(°C)         | ORP<br>(mv) | DTW<br>(feet) | Comments                                                                                       |
| 0                | +/- 0.1<br>std.unit                   | +/- 3%        | +/- 10%<br>NA <10NTU                                                                                           | +/-10%             | +/- 1 E              | +/-10 mv    |               |                                                                                                |
| 5 1010           | 4.77                                  | 0.028         | 1.10                                                                                                           | 10.72              | 1.5                  | 261         | NIA           |                                                                                                |
| 10               |                                       |               |                                                                                                                |                    |                      |             |               |                                                                                                |
| 15               |                                       |               | -                                                                                                              |                    |                      |             |               |                                                                                                |
| 20               |                                       |               |                                                                                                                |                    |                      |             |               |                                                                                                |
| 25               |                                       |               |                                                                                                                |                    |                      |             |               |                                                                                                |
| 30               |                                       |               | er annen |                    |                      |             |               |                                                                                                |
| 35               |                                       |               |                                                                                                                |                    |                      |             |               |                                                                                                |
| 40               |                                       |               |                                                                                                                |                    |                      |             |               |                                                                                                |
| 45               |                                       |               | -                                                                                                              |                    |                      |             |               |                                                                                                |
| 50               |                                       |               |                                                                                                                |                    |                      |             |               |                                                                                                |
| 55               |                                       |               |                                                                                                                |                    |                      |             |               |                                                                                                |
| 60               |                                       |               |                                                                                                                |                    |                      |             |               |                                                                                                |
| 65               |                                       |               |                                                                                                                |                    |                      |             |               |                                                                                                |
| 70               |                                       |               |                                                                                                                |                    |                      |             |               | · .                                                                                            |
| 75               |                                       |               |                                                                                                                |                    |                      |             | ·             |                                                                                                |
| 80               | · · · · · · · · · · · · · · · · · · · |               | -                                                                                                              | - <u> </u>         |                      |             |               |                                                                                                |
| 85               |                                       |               |                                                                                                                | -                  |                      |             |               | e waarmaan and Bernenen namma an Adelber op dich fra Franzessen (son a reasonada a 400 dich b. |
| 90               |                                       |               |                                                                                                                |                    |                      |             |               |                                                                                                |
| 95               |                                       |               |                                                                                                                |                    |                      |             |               |                                                                                                |
| 100              | -                                     |               |                                                                                                                |                    |                      |             |               |                                                                                                |
| 105              |                                       |               |                                                                                                                |                    |                      |             |               |                                                                                                |
| 110              |                                       |               |                                                                                                                | <b>1400 D. 400</b> |                      |             |               |                                                                                                |
| 115              |                                       |               |                                                                                                                |                    |                      |             |               |                                                                                                |
| 120              |                                       |               |                                                                                                                |                    |                      |             | 1             |                                                                                                |

3.3.10

| ISFSI Radiation Protection                  |             |                                          | RP-05<br>Rev. 3                               |
|---------------------------------------------|-------------|------------------------------------------|-----------------------------------------------|
| GROUND WAT                                  | TER SA      | MPLING FIELD LOG                         |                                               |
|                                             | For         | <u>m 1</u>                               |                                               |
| Sample Location SW-2                        | _Well D     | Designation 540-2                        |                                               |
| Sampling Team M. Van Noordennen             | Sample      | e Period March 2010                      |                                               |
| Date 33-10                                  | Time_       | 0920-0945                                |                                               |
|                                             |             |                                          |                                               |
|                                             |             | Depth to Mid Screen                      | (ft)                                          |
| Measuring Point                             |             | Diameter of Well                         | (in)                                          |
| Well Depth (from measuring point) (D)       |             |                                          | (ft)                                          |
| Depth to water (DTW)                        | 1           |                                          | (ft)                                          |
| Length of Water Column (LWC)                | N           | (ft) (L                                  | WC=D-DTW)                                     |
| Volume of Water in Well (VW)                | A           | gal                                      | Conversion                                    |
|                                             |             |                                          | Factor                                        |
| Volume of Purge (VTP) (VTP = VW x 3         | <b>3)</b> . | (gal)                                    |                                               |
|                                             |             |                                          |                                               |
| 1                                           |             |                                          |                                               |
|                                             |             | n an | <u></u>                                       |
| At Time of Measurements:                    |             |                                          |                                               |
| Color Clear                                 |             | Odor <u>Slight organ</u>                 | 2                                             |
| Total volume purged N/A                     |             | Duration of purging NIA                  |                                               |
| Purging method                              |             | Did well go dry?/A                       | s.                                            |
| Weather conditions Snowy, 35 °F             |             |                                          |                                               |
|                                             | -           |                                          |                                               |
|                                             |             |                                          |                                               |
|                                             |             |                                          | <u>, , , , , , , , , , , , , , , , , , , </u> |
| Pump Serial Number                          |             |                                          |                                               |
| Water Quality Monitor Serial Number _H      | ariba L     | 1.22 Mo15-09, HACH 2100                  | re mo24-20                                    |
| Analyses Requested VOC, CN, NA3, SD,        | 1, CF, T    | OS, alkalinity, coo, met                 | als.                                          |
|                                             |             |                                          |                                               |
| Previous Final Readings: pH >.46 Cond e.o.2 | Turb 1.2    | 24 DO 9.52 Temp 143 ORP 52 ]             | DTW                                           |
| $Flow - {}^{3}H -$                          |             |                                          |                                               |

|   |               |         |                                          | WATE                 | R QUALI       | <b>FY PARA</b> | METERS      | 5                                                                                                                | 51.9                                                                                                            |
|---|---------------|---------|------------------------------------------|----------------------|---------------|----------------|-------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| r |               |         |                                          |                      | Fo            | <u>rm 2</u>    |             | Rectification and the second | NOTR                                                                                                            |
|   | Sample        | Round   | March                                    | 2010                 |               |                | •           |                                                                                                                  |                                                                                                                 |
| Ī |               | -       | •                                        |                      | Current       | Readings       |             |                                                                                                                  |                                                                                                                 |
|   | Time<br>(min) | pН      | Cond<br>mS/cm                            | Turb<br>(NTU)        | D.O<br>(mg/L) | Temp<br>(°C)   | ORP<br>(mv) | DTW<br>(feet)                                                                                                    | Comments                                                                                                        |
|   | 0             | +/- 0.1 | +/- 3%                                   | +/- 10%<br>NA <10NTU | +/-10%        | +/- 1 E        | +/-10 mv    |                                                                                                                  |                                                                                                                 |
| 0 | 5 0345        | 633     | 0.027                                    | 4.12                 | 15.02         | 1.1            | 91          | NA                                                                                                               |                                                                                                                 |
|   | 10            |         |                                          |                      | 1.5           |                | -           |                                                                                                                  | an ann an San Ann an |
|   | 15            |         | 1                                        |                      |               |                |             |                                                                                                                  |                                                                                                                 |
|   | 20            |         |                                          | ·                    |               |                |             |                                                                                                                  |                                                                                                                 |
|   | 25            |         |                                          |                      |               |                |             |                                                                                                                  |                                                                                                                 |
|   | 30            |         |                                          | -                    |               |                |             |                                                                                                                  |                                                                                                                 |
|   | 35            |         |                                          |                      |               |                |             |                                                                                                                  |                                                                                                                 |
|   | 40            |         |                                          |                      |               |                |             |                                                                                                                  |                                                                                                                 |
|   | 45            |         |                                          |                      | ·             |                |             |                                                                                                                  | -                                                                                                               |
|   | 50            | -       |                                          |                      |               |                |             |                                                                                                                  |                                                                                                                 |
|   | 55            | -       | ma ana ana ana ana ana ana ana ana ana a |                      |               |                |             |                                                                                                                  |                                                                                                                 |
|   | 60            | · ·     |                                          |                      |               |                |             |                                                                                                                  |                                                                                                                 |
|   | 65            |         |                                          |                      |               |                |             |                                                                                                                  |                                                                                                                 |
|   | 70            |         |                                          |                      | -             |                |             | <u> </u>                                                                                                         |                                                                                                                 |
|   | 75            |         |                                          |                      |               |                |             |                                                                                                                  |                                                                                                                 |
| • | / 3           |         |                                          |                      |               |                |             |                                                                                                                  |                                                                                                                 |
|   | 80            | -       |                                          |                      |               |                |             |                                                                                                                  |                                                                                                                 |
|   | 85            |         |                                          |                      |               | -              |             |                                                                                                                  |                                                                                                                 |
|   | 90            |         | ·                                        |                      |               |                |             | <u> </u>                                                                                                         |                                                                                                                 |
|   | 95            |         |                                          |                      |               |                |             |                                                                                                                  |                                                                                                                 |
|   | 100           |         |                                          |                      |               |                |             |                                                                                                                  |                                                                                                                 |
|   | 105           |         |                                          |                      |               |                |             |                                                                                                                  |                                                                                                                 |
|   | 110           |         |                                          |                      |               |                |             |                                                                                                                  |                                                                                                                 |
|   | 115           |         |                                          |                      |               |                |             |                                                                                                                  |                                                                                                                 |
|   | 120           |         |                                          |                      |               |                |             |                                                                                                                  |                                                                                                                 |

| SFSI Radiation Protection                                                                                       |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RP-05<br>Rev. 3                       |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| CROUND WA                                                                                                       | FFR SAMPLI                                                                                                      | NG FIELD LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · · |
| GROUNDWA                                                                                                        | Form 1                                                                                                          | <u>(() 11000 200</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Sample Location SLU-3                                                                                           | Well Designat                                                                                                   | tion Sw-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · · |
| Sampling Team M. Van Noordennen                                                                                 | _Sample Period                                                                                                  | March 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| Date 3-3-10                                                                                                     | Time_085                                                                                                        | 0-0920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
|                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
|                                                                                                                 | Dept                                                                                                            | h to Mid Screen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (ft)                                  |
| Measuring Point                                                                                                 |                                                                                                                 | Diameter of Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (in)                                  |
| Well Depth (from measuring point) (D)                                                                           |                                                                                                                 | and the second se | (ft)                                  |
| Depth to water (DTW)                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (ft)                                  |
| Length of Water Column (LWC)                                                                                    | N                                                                                                               | (ft) (L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WC=D-DTW)                             |
| Volume of Water in Well (VW)                                                                                    | - A                                                                                                             | gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Conversion                            |
|                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Factor                                |
| Volume of Purge (VTP) (VTP = VW x 1                                                                             | 3).                                                                                                             | (gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
|                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
| a transformati da ilizza energetta a filo e a constanta da antenna en en antenna de antenna de antenna de anten |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
| At Time of Measurements:                                                                                        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
| ColorClear                                                                                                      | Od                                                                                                              | or Slight organic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| Total volume purged <u>J/A</u>                                                                                  | Du                                                                                                              | ration of purging N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                     |
| Purging method                                                                                                  | Did                                                                                                             | l well go dry?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |
| Weather conditions Snowy, 35'f                                                                                  | _                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
|                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
|                                                                                                                 | ny additionan an                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
|                                                                                                                 |                                                                                                                 | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| Pump Serial Number                                                                                              | and the state of the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
| Water Quality Monitor Serial Number <u>H</u>                                                                    | or.159, U.22 M                                                                                                  | 1015-09, HACH 2100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P M024-20                             |
| Analyses Requested VOC, CN, Soy, No                                                                             | 3, CT, TDS, A                                                                                                   | likelinity, coD, meta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | us ·                                  |
|                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
| Previous Final Readings: pH 522 Cond                                                                            | aTurb <u>asyDO</u>                                                                                              | 576 Temp 0 7 ORP 223 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DTW                                   |
| Flow ~ <sup>3</sup> H ~                                                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |

|          |               |                                                                                             | · .                                   | WATE                                  | <u>R QUALF</u><br>Fo | <u>rm 2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | METER       | 2                                        | SW-3                                               |
|----------|---------------|---------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------|----------------------------------------------------|
|          | Sample        | Round                                                                                       | march                                 | 2010                                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _           | 4900-0420-0420-0420-0420-0420-0420-0420- |                                                    |
|          |               |                                                                                             |                                       | V                                     | Current              | Readings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                          | <u>a na sa /u> |
|          | Time<br>(min) | pН                                                                                          | Cond<br>mS/cm                         | Turb<br>(NTU)                         | D.O<br>(mg/L)        | Temp<br>(°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ORP<br>(mv) | DTW<br>(feet)                            | Comments                                           |
| <b>,</b> | 0<br>Ani      | +/- 0.1<br>std.unit                                                                         | +/- 3%                                | +/- 10%<br>NA <10NTU                  | +/-10%               | +/-1E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +/-10 mv    |                                          |                                                    |
| 3-3-10   | 50920         | 6.45                                                                                        | 0.028                                 | 3.69                                  | 17.13                | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40          | N/A                                      |                                                    |
|          | 10            |                                                                                             |                                       | · · ·                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          |                                                    |
|          | 15            |                                                                                             |                                       | -                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          |                                                    |
|          | 20            |                                                                                             |                                       |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          |                                                    |
|          | 25            |                                                                                             |                                       |                                       |                      | an parte and define of the state of the stat |             |                                          |                                                    |
|          | 30            |                                                                                             |                                       |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          |                                                    |
|          | 35            |                                                                                             |                                       |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          |                                                    |
|          | 40            |                                                                                             | • • • • • • • • • • • • • • • • • • • | · ·                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          |                                                    |
|          | 45            |                                                                                             |                                       |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          |                                                    |
|          | 50            | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                       |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          |                                                    |
|          | 55            |                                                                                             |                                       |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | -                                        |                                                    |
|          | 60            |                                                                                             |                                       |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          |                                                    |
|          | 65            |                                                                                             |                                       | · · · · · · · · · · · · · · · · · · · |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          |                                                    |
|          | 70            |                                                                                             |                                       |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          |                                                    |
|          | 75            |                                                                                             |                                       |                                       |                      | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                          |                                                    |
|          | 80            |                                                                                             |                                       |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          |                                                    |
|          | 85            | -                                                                                           | 1                                     |                                       |                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                          |                                                    |
|          | 90            |                                                                                             |                                       |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          |                                                    |
|          | 95            |                                                                                             |                                       |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          |                                                    |
|          | 100           |                                                                                             |                                       |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          |                                                    |
|          | 105           |                                                                                             |                                       |                                       |                      | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                          |                                                    |
|          | 110           |                                                                                             |                                       |                                       |                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 1                                        |                                                    |
|          | 115           |                                                                                             |                                       | -                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          |                                                    |
|          | 120           |                                                                                             |                                       |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | <u> </u>                                 |                                                    |

Page 11 of 40

| SFSI Radiation Protection                    | RP-05<br>Rev. 3                             |
|----------------------------------------------|---------------------------------------------|
|                                              | CAMPANIC FIFLD LOC                          |
| GROUND WATER                                 | SAMPLING FIELD LOG<br>Form 1                |
|                                              | II Designation S()-4                        |
| ample Location <u>) W-4 - 3977</u> Wel       | In Designation                              |
| Sampling Team M. Van Noordennen Sam          | $\frac{0955 - 1005}{100}$                   |
| Date $3 \times 10$ 1 im                      |                                             |
|                                              | Donth to Mid Soreen (ft)                    |
|                                              | Diamater of Well (in)                       |
| Measuring Point                              | Diameter of Wen(m)                          |
| Well Depth (from measuring point) (D)        | (11)                                        |
| Depth to water (DTW)                         |                                             |
| Length of Water Column (LWC)                 |                                             |
| Volume of Water in Well (VW)                 | gai Conversion                              |
|                                              | Factor                                      |
| Volume of Purge (VTP) (VTP = VW x 3)         | (gal)                                       |
| Aug 3.2-11)                                  |                                             |
|                                              |                                             |
|                                              |                                             |
| At Time of Measurements:                     |                                             |
| Color Clear                                  | Odor_Slight organic                         |
| Total volume purged N/A                      | Duration of purging N/A                     |
| Purging method N/A                           | Did well go dry?                            |
| Weather conditions Shany, 35-6               |                                             |
|                                              |                                             |
|                                              |                                             |
|                                              |                                             |
| Dump Social Number N/A                       |                                             |
| Wester Quality Manifer Serial Number Hack    | 0 4.2.7. MO15-09 HACH 21008 M024-20         |
| And the Requested VAC COD CN Metals          | Nitrate, Chloride, Sulfate, TDS, alkalinity |
| Analyses Requested                           |                                             |
| The second second second second              | the DOW Temple ORP 16 DTW -                 |
| Previous Final Readings: pH 607 Cond 0055 Tu |                                             |
| FlowH                                        |                                             |

|               |                     |                                       | WATE                 | <u>R QUALI.</u><br>Fo | I Y PARA     | VIE LERS    | 2             | SW-4            |
|---------------|---------------------|---------------------------------------|----------------------|-----------------------|--------------|-------------|---------------|-----------------|
| Sample        | Round               | March                                 | 2010                 |                       |              |             |               |                 |
|               |                     | 1.1410h                               | . 4010               | Current               | Readings     |             |               |                 |
| Time<br>(min) | pH                  | Cond<br>mS/cm                         | Turb<br>(NTU)        | D.O<br>(mg/L)         | Temp<br>(°C) | ORP<br>(mv) | DTW<br>(feet) | Comments        |
| 0             | +/- 0.1<br>std.unit | +/- 3%                                | +/- 10%<br>NA <10NTU | +/-10%                | +/- 1 E      | +/-10 mv    |               |                 |
| BOM (AS)      | 6.45                | 0.028                                 | 3.41                 | 13.85                 | 1.0          | 51          | NA            | collect samples |
| 10            |                     |                                       |                      |                       |              |             |               |                 |
| 15            |                     |                                       |                      |                       |              |             |               |                 |
| 20            |                     |                                       |                      |                       |              |             |               |                 |
| 25            |                     |                                       |                      |                       |              |             |               |                 |
| 30            |                     |                                       |                      |                       | ·            |             |               |                 |
| 35            |                     |                                       |                      |                       |              |             |               |                 |
| 40            |                     |                                       |                      |                       |              |             |               |                 |
| 45            |                     |                                       |                      |                       |              |             |               |                 |
| 50            |                     |                                       |                      |                       |              |             |               |                 |
| 55            |                     |                                       |                      | -                     |              |             |               |                 |
| 60            |                     |                                       |                      |                       |              |             |               |                 |
| 65            |                     | *****                                 |                      |                       |              |             |               |                 |
| 70            |                     |                                       |                      | -                     |              | · ·         |               |                 |
| 75            |                     | · · · · · · · · · · · · · · · · · · · |                      |                       |              |             |               |                 |
| 80            |                     |                                       |                      |                       | -            |             |               |                 |
| 85            |                     |                                       |                      |                       |              |             |               |                 |
| 90            |                     |                                       |                      |                       |              |             |               |                 |
| 95            |                     |                                       |                      | -                     |              |             |               |                 |
| 100           |                     | ware an angeletite control of a state |                      |                       |              |             |               |                 |
| 105           |                     |                                       |                      |                       |              |             |               |                 |
| 110           |                     |                                       |                      |                       |              |             |               |                 |
| 115           |                     |                                       |                      |                       |              |             |               |                 |
| 120           |                     |                                       |                      |                       |              |             |               |                 |

| ISFSI Radiation Protection                 | RP-05<br>Rev. 3                                 |
|--------------------------------------------|-------------------------------------------------|
| GROUND WAT                                 | TER SAMPLING FIELD LOG                          |
|                                            | Form 1                                          |
| Sample Location SW-5 SCFA                  | Well Designation SW-S                           |
| Sampling Team M. Van Noodennen             | Sample Period 2010                              |
| Date3-2-10                                 | Time_1020-1050                                  |
|                                            |                                                 |
|                                            | Depth to Mid Screen(ft)                         |
| Measuring Point                            | Diameter of Well(in)                            |
| Well Depth (from measuring point) (D)      | (ft)                                            |
| Depth to water (DTW)                       | (ft)                                            |
| Length of Water Column (LWC)               | (ft) (LWC=D-DTW)                                |
| Volume of Water in Well (VW)               | gal Conversion                                  |
|                                            | Factor                                          |
| Volume of Purge (VTP) (VTP = VW x $3$      | (gal)                                           |
| 04 1 22 10                                 |                                                 |
| - 4M 3-A-10                                |                                                 |
|                                            |                                                 |
| At Time of Measurements:                   |                                                 |
| Color Clear                                | Odor Slight organic                             |
| Total volume purged N/A                    | Duration of purging $N/A$                       |
| Purging method W/A                         | Did well go dry?                                |
| Weather conditions Sunny, 35°F             |                                                 |
|                                            |                                                 |
|                                            |                                                 |
|                                            |                                                 |
| Pump Serial Number                         |                                                 |
| Water Quality Monitor Serial Number Ha     | 15:16 U-22 MOIS-09, HACH 21008 MO24-28          |
| Analyses Requested VOC, COO, CN, Meta      | als, nitrate, chlorde, sulfate, TOS, alkalihity |
|                                            |                                                 |
| Previous Final Readings: pH 5-63 Cond 0-03 | Turbe & DO 10 & Temp 1.6 ORP 161 DTW -          |
| $Flow - {}^{3}H$                           |                                                 |

|        |               |                                          |         | WATE:                | R QUALII | Y PARA                                                                                                           | METER    | 5      | CILE           |
|--------|---------------|------------------------------------------|---------|----------------------|----------|------------------------------------------------------------------------------------------------------------------|----------|--------|----------------|
|        |               |                                          | Υ.<br>Υ |                      | For      | <u>m 2</u>                                                                                                       |          |        | 360-3          |
|        | Sample        | Round                                    | mard    | 2 2010               |          |                                                                                                                  |          |        |                |
|        | 4.            |                                          | •       |                      | Current  | Readings                                                                                                         |          |        | · · ·          |
|        | Time<br>(min) | pH                                       | Cond    | Turb<br>(NTU)        | D.0      | Temp<br>(°C)                                                                                                     | ORP      | DTW    | Comments       |
|        | ()            |                                          | mS/cm   |                      | (mg/L)   |                                                                                                                  | (mv)     | (Teet) |                |
| ,      | 0             | +/- 0.1<br>std.unit                      | +/- 3%  | +/- 10%<br>NA <10NTU | +/-10%   | +/-1E                                                                                                            | +/-10 mv |        |                |
| 3-2-10 | \$ 1050       | 6.42                                     | 0.022   | 1.31                 | 12.54    | 0.9                                                                                                              | 91       | NA     | Gllect samples |
|        | 10            |                                          |         |                      | -        |                                                                                                                  |          |        | , е<br>,       |
|        | 15            | an a |         |                      | ·        | and the second |          |        |                |
|        | 20            |                                          |         |                      |          |                                                                                                                  |          |        |                |
|        | 25            |                                          |         |                      |          |                                                                                                                  |          | -      |                |
|        | 30            |                                          |         |                      |          |                                                                                                                  |          |        |                |
|        | 35            |                                          |         |                      |          |                                                                                                                  |          |        |                |
|        | 40            |                                          |         |                      |          | 1                                                                                                                |          |        |                |
|        | 45            |                                          |         |                      |          |                                                                                                                  |          |        |                |
|        | 50            |                                          |         |                      |          |                                                                                                                  |          |        |                |
|        | 55            |                                          |         |                      |          |                                                                                                                  |          |        |                |
|        | 60            |                                          |         |                      |          |                                                                                                                  |          |        |                |
|        | 65            |                                          |         |                      |          |                                                                                                                  |          |        |                |
|        | 70            |                                          |         |                      |          |                                                                                                                  |          |        |                |
| •      | 75            |                                          |         |                      |          | · ·                                                                                                              |          |        |                |
|        | 80            |                                          |         |                      |          |                                                                                                                  |          |        |                |
|        | 85            |                                          |         |                      |          |                                                                                                                  |          |        |                |
|        | 90            |                                          |         |                      |          |                                                                                                                  |          |        |                |
|        | 95            | ·                                        |         |                      |          |                                                                                                                  |          |        |                |
| · · ·  | 100           |                                          |         |                      |          |                                                                                                                  |          |        |                |
|        | 105           |                                          |         |                      |          |                                                                                                                  |          |        |                |
|        | 110           |                                          |         |                      |          |                                                                                                                  |          | -      |                |
|        | 115           |                                          |         |                      |          |                                                                                                                  |          |        |                |
|        | 120           |                                          |         |                      |          |                                                                                                                  |          |        |                |

RP-05 Rev. 3

Page 11 of 40

| ISFSI | Radiation | Protection |
|-------|-----------|------------|
|-------|-----------|------------|

| Sample LocationSWOIIWell DesignationSWOIISampling TeamRENEAUBESample PeriodMANCHDate3/3/10Time12.30(SAMP) | <u>2010</u><br>LE)                                                                            |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                                                                                                           |                                                                                               |
| A SURFACE WATER SAMPLE A<br>Depth to Mid Screen<br>Diameter of Well                                       | NA (ft)<br>NA (in)                                                                            |
| Well Depth (from measuring point) (D)                                                                     | $\frac{\mathcal{N}\mathcal{A}}{\mathcal{N}\mathcal{A}}$ (ft)<br>$\mathcal{N}\mathcal{A}$ (ft) |
| Length of Water Column (LWC) $\mathcal{NA}$ (ft)Volume of Water in Well (VW) $\mathcal{NA}$ gal           | (LWC=D-DTW)<br>Conversion                                                                     |
| Volume of Purge (VTP) (VTP = VW x 3) $NA$ (gal)                                                           | )                                                                                             |

| At Time of Measurements:              |                        |
|---------------------------------------|------------------------|
| Color CLEAR                           | Odor NONE              |
| Total volume purged <u>NA</u>         | Duration of purging NA |
| Purging method GEOPUMP                | Did well go dry?NA     |
| Weather conditions FULL OVERCAST,     | COLD, LITE SNOW.       |
| · · · · · · · · · · · · · · · · · · · |                        |
|                                       |                        |

| Pump Serial Number      | 5008-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |             |                                                                                                                                                                                                                                    |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water Ouality Monitor   | Serial Number MC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No. of the second s |             |                                                                                                                                                                                                                                    |
| Analyses Requested      | spec, Sr.90, H-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | metals                                                                                                         |             |                                                                                                                                                                                                                                    |
|                         | Several Control of Seve |                                                                                                                |             |                                                                                                                                                                                                                                    |
| Previous Final Readings | : pH())CondessaTurb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.44 DO 12.25 Temp a 40                                                                                        | ORP 183 DTW | مەت / مەت بەر م<br>مەت بەر مەت بەر |
|                         | Flow 3H < MOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |             | . ,                                                                                                                                                                                                                                |

RP-05 Rev. 3

# RP-05 Rev. 3

#### WATER QUALITY PARAMETERS

|               | •                                      | n<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | For                                   | <u>m 2</u>   |             | Concerning and the second second second           |          |
|---------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------|--------------|-------------|---------------------------------------------------|----------|
| Sample        | e Round                                | MARC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CH 20                | 10                                    |              | SW          | 011                                               |          |
| •             | •                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,<br>                | Current                               | Readings     |             |                                                   |          |
| Time<br>(min) | pH                                     | Cond<br>mS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Turb<br>(NTU)        | D.O<br>(mg/L)                         | Temp<br>(°C) | ORP<br>(mv) | DTW<br>(feet)                                     | Comments |
| 0             | +/- 0.1<br>std.unit                    | +/- 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +/- 10%<br>NA <10NTU | +/-10%                                | +/- 1 E      | +/-10 mv    |                                                   |          |
| 5             | SURF                                   | ACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WATER                | SAM                                   | DLE          | RECO        | RD                                                |          |
| 10            | ONE                                    | SET F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FIELD I              | DATA                                  |              |             |                                                   |          |
| 15            | 7.76                                   | .037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,10                 | 9.22                                  | 1.1          | 153         | 0.00                                              |          |
| 20            | COUE                                   | CT SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MPIE                 | 5.                                    |              |             |                                                   |          |
| 25            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                                       |              |             |                                                   |          |
| 30            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                                       |              |             |                                                   |          |
| 35            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · ·                |                                       |              |             |                                                   |          |
| 40            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                                       |              |             |                                                   |          |
| 45            |                                        | and the second |                      |                                       |              |             |                                                   |          |
| 50            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                                       |              |             | The party of the second state of the second state |          |
| 55            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | · · · · · · · · · · · · · · · · · · · |              |             |                                                   |          |
| 60            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                                       |              |             |                                                   |          |
| 65            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                                       |              |             |                                                   |          |
| 70            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                                       |              |             |                                                   |          |
| 75            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                                       |              |             |                                                   |          |
| 80            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                                       |              |             |                                                   |          |
| 85            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                                       |              |             |                                                   |          |
| 90            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | <b>N 2019 (1970)</b>                  |              |             |                                                   |          |
| 95            | -                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -<br>-<br>-          |                                       |              |             |                                                   |          |
| 100           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                                       |              |             |                                                   |          |
| 105           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                                       |              | -           |                                                   |          |
| 110           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                                       |              |             | · · ·                                             |          |
| 115           | ······································ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                                       |              |             |                                                   |          |
| 120           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                                       |              |             |                                                   |          |

1225 1230
| FSI Radiation Protection                          |                                 |                                                                                                                 | Rev. 3                                                                                                         |
|---------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| GROUND WAT                                        | <u>FER SA</u><br>For            | MPLING FIELD LOG<br>m 1                                                                                         |                                                                                                                |
| ample Location SW-408                             | Well I                          | Designation 5-0-408                                                                                             |                                                                                                                |
| ampling Team M. Von Noordeanon                    | Sample                          | e Period March 2010                                                                                             |                                                                                                                |
| ate 33.10                                         | Time                            | 1140-1200                                                                                                       |                                                                                                                |
|                                                   |                                 |                                                                                                                 |                                                                                                                |
|                                                   |                                 | Depth to Mid Screen                                                                                             | (ft)                                                                                                           |
| Measuring Point                                   |                                 | Diameter of Well                                                                                                | (in)                                                                                                           |
| Well Depth (from measuring point) (D)             |                                 |                                                                                                                 | (ft)                                                                                                           |
| Depth to water (DTW)                              | . )                             |                                                                                                                 | (ft)                                                                                                           |
| Length of Water Column (LWC)                      | N                               | (ft) (LV                                                                                                        | VC=D-DTW)                                                                                                      |
| Volume of Water in Well (VW)                      | -11                             | gal                                                                                                             | Conversion                                                                                                     |
|                                                   |                                 |                                                                                                                 | Factor                                                                                                         |
| Volume of Purge (VTP) (VTP = VW x 3               | 3).                             | (gal)                                                                                                           |                                                                                                                |
|                                                   |                                 |                                                                                                                 |                                                                                                                |
|                                                   |                                 |                                                                                                                 | agan tanan katalan kat |
|                                                   |                                 |                                                                                                                 |                                                                                                                |
| At Time of Measurements:                          |                                 |                                                                                                                 |                                                                                                                |
| Color Clear                                       |                                 | Odor None                                                                                                       |                                                                                                                |
| Total volume purged N/W                           |                                 | Duration of purging $N/A$                                                                                       |                                                                                                                |
| Purging method N/A                                |                                 | Did well go dry? N/A                                                                                            |                                                                                                                |
| Weather conditions SN may . 35°F                  | 2960-75-75<br>2 <sup>1</sup>    |                                                                                                                 |                                                                                                                |
| weather conditions_streamy roo t                  |                                 |                                                                                                                 |                                                                                                                |
|                                                   | ,<br>                           |                                                                                                                 | ,<br><u>androget property and a state of the state of the state of the state</u>                               |
|                                                   |                                 | 1999-1999 - 1999-1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199 |                                                                                                                |
| N/A                                               |                                 |                                                                                                                 |                                                                                                                |
| Pump Senai Number                                 | laribe (                        | 4.22 MOIS-09 HACH 21001                                                                                         | 0 moz4-20                                                                                                      |
| water Quality Monitor Serial Number 1             | 5-                              | -90 H.2                                                                                                         |                                                                                                                |
| Analyses Requested manalysis Jpe                  | C. J:                           | 10,11.2                                                                                                         | -                                                                                                              |
|                                                   | 8m. 1 is                        | 1 DQ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                        | Γ\\ <i>I</i>                                                                                                   |
| revious Final Readings: pH <u>4</u> Cond <u>0</u> | $\frac{11 \text{ urb } 0}{000}$ | <u>6 DU 10471 emp 3 &amp; UKP 201 D</u>                                                                         | 1 VV                                                                                                           |

Page 10 of 40

# ISFSI Radiation Protection

i

|        |               |                                       | т.<br>Х       |                      | Fo            | <u>rm 2</u>  |                                        |               | 50-408   |
|--------|---------------|---------------------------------------|---------------|----------------------|---------------|--------------|----------------------------------------|---------------|----------|
|        | Sample        | Round                                 | March         | 2010                 | -             |              | •                                      |               |          |
|        |               | ·. •                                  |               | 1                    | Current       | Readings     |                                        |               | · · · ·  |
|        | Time<br>(min) | рН                                    | Cond<br>mS/cm | Turb<br>(NTU)        | D.O<br>(mg/L) | Temp<br>(°C) | ORP<br>(mv)                            | DTW<br>(feet) | Comments |
|        | 0<br>Jul      | +/- 0.1<br>std.unit                   | +/- 3%        | +/- 10%<br>NA <10NTU | +/-10%        | +/- 1 E      | +/-10 mv                               |               |          |
| 3.3.10 | 5 1200        | 636                                   | 0.035         | 2.93                 | 12.56         | 1.6          | 154                                    | NA            |          |
|        | 15            | · · · · · · · · · · · · · · · · · · · |               |                      |               |              |                                        |               |          |
|        | 25            |                                       |               |                      |               | -            |                                        |               |          |
|        | 30            |                                       |               |                      |               |              |                                        |               |          |
|        | 40            |                                       |               |                      |               |              |                                        |               |          |
|        | 45<br>50      |                                       |               |                      |               |              |                                        |               |          |
|        | 55            |                                       |               | -                    |               |              | ······································ |               |          |
|        | 60<br>65      |                                       |               |                      |               |              |                                        |               |          |
|        | 70            |                                       |               |                      | •             |              |                                        |               |          |
| •      | 80            |                                       |               |                      |               |              |                                        |               |          |
|        | 85<br>90      |                                       |               |                      |               |              |                                        |               |          |
|        | 95            |                                       |               |                      |               |              |                                        |               |          |
|        | 100<br>105    |                                       |               |                      |               |              |                                        |               |          |
|        | 110           |                                       |               |                      |               |              |                                        |               |          |
|        | 115           |                                       |               |                      |               |              |                                        |               |          |

## WATER QUALITY PARAMETERS

RP-05 Rev. 3 **APPENDIX B** 

## ANALYTICAL DATA - MARCH 2010

**APPENDIX B-1** 

## **RADIOLOGICAL DATA-MARCH 2010**

#### APPENDIX B-1 Radiological Data - March 2010

#### Yankee Nuclear Power Station

|                       | Sample Deliv | ery Group |         | 3Y-YR-0   | 03          |        | 3Y-YR-0   | 03          |        | 3Y-YR-0   | 03          |         | 3Y-YR-0   | 03          | 3Y-YR-003 |           | 03          |
|-----------------------|--------------|-----------|---------|-----------|-------------|--------|-----------|-------------|--------|-----------|-------------|---------|-----------|-------------|-----------|-----------|-------------|
|                       | Lab          | Sample Id |         | 2488110   | 01          |        | 2488110   | 02          |        | 2488110   | 03          |         | 2488110   | 04          |           | 2488110   | 05          |
|                       | ,            | Location  |         | MW-102    | 2D          |        | MW-104    | A           |        | MW-104    | A           |         | MW-105    | 5B          |           | MW-106    | ŝА          |
|                       | Sa           | mple Date |         | 3/4/2010  |             |        | 3/2/201   | 0           |        | 3/2/201   | 0           |         | 3/4/201   | 0           | 3/4/2010  |           | 0 .         |
|                       |              | Sample ID |         | MW-102    | 2D          |        | MW-104    | A           | N      | W-104A[   | DUP         |         | MW-105    | δB          |           | MW-106    | ы́А         |
|                       |              | Qc Code   |         | FS        |             |        | FS        |             |        | FD        |             |         | FS        |             |           | FS        | 1           |
| Analysis              | Parameter    | Units     | Result  | Qualifier | Uncertainty | Result | Qualifier | Uncertainty | Result | Qualifier | Uncertainty | Result  | Qualifier | Uncertainty | Result    | Qualifier | Uncertainty |
| EPA 901.1             | Antimony-125 | pCi/L     | -3.77   | U         | 5.68        | -0.657 | U         | 4.56        | -4.11  | U         | 6.11        | -0.566  | U         | 5.62        | 0.825     | U         | 5.42        |
| EPA 901.1             | Cesium-134   | pCi/L     | -0.61   | U         | 2.49        | 1.65   | U         | 2.02        | -0.343 | U         | 3.46        | -0.0093 | U         | 2.58        | -1.68     | U         | 2.35        |
| EPA 901.1             | Cesium-137   | pCi/L     | -0.217  | U         | 2.38        | 0.219  | U         | 1.97        | 0.12   | U         | 2.43        | -4.16   | υ         | 2.77        | -0.595    | U         | 1.89        |
| EPA 901.1             | Cobalt-60    | pCi/L     | 0.33    | U         | 2.24        | -0.964 | U         | 1.99        | -0.027 | U         | 2.27        | 1.18    | U         | 2.42        | -0.861    | U         | 1.99        |
| EPA 901.1             | Europium-152 | pCi/L     | -5.95   | U         | 6.23        | 1.79   | U         | 4.99        | -1.46  | U         | 7.09        | 0.206   | U         | 5.97        | -1.92     | U         | 5.6         |
| EPA 901.1             | Europium-154 | pCi/L     | -0.0912 | U         | 5.59        | -3.69  | U         | 4.85        | -1.27  | U         | 6.14        | -3.06   | U         | 6.54        | 4.53      | U         | 5.7         |
| EPA 901.1             | Europium-155 | pCi/L     | -6.98   | U         | 9           | -8.7   | U         | 6.49        | -9.89  | U         | 9.36        | -0.547  | U         | 8.37        | 2.48      | U         | 6.62        |
| EPA 901.1             | Niobium-94   | pCi/L     | -0.367  | U         | 1.98        | 0.218  | U         | 1.6         | 1.44   | U         | 1.87        | 3.31    | U         | 2.04        | 0.412     | U         | 1.57        |
| EPA 901.1             | Silver-108   | pCi/L     | -0.486  | U         | 1.82        | -0.034 | U         | 1.55        | 0.175  | U         | 2.08        | -0.904  | U         | 1.79        | -0.584    | U         | 1.76        |
| EPA 905.0 Modified    | Strontium-90 | pCi/L     | 0.679   | U         | 0.943       | 0.47   | U         | 0.941       | -0.813 | U         | 0.709       | 0.504   | U         | 0.96        | 0.468     | U         | 0.917       |
| EPA 906.0 Modified    | Tritium      | pCi/L     | 101     | U         | 104         | 967    |           | 261         | 774    |           | 224         | 3890    |           | 820         | 530       |           | 180         |
| Notes:                |              |           |         |           |             |        |           |             |        |           |             |         |           |             |           |           |             |
| FS = Field Sample     |              |           |         |           |             |        |           |             |        |           |             |         |           |             |           |           |             |
| FD = Field Duplicate  |              |           |         |           | ·           |        |           |             |        |           |             | 2       |           |             |           |           |             |
| EB = Equipment Blan   | k            |           |         |           |             |        |           |             |        |           |             |         |           |             |           |           |             |
| pCi/L = Picocuries pe | r liter      |           |         |           |             |        |           |             |        |           |             |         |           |             |           |           |             |
| U = Not detected      | · .          |           |         |           |             |        |           |             |        |           |             |         |           |             |           |           |             |

#### APPENDIX B-1 Radiological Data - March 2010

#### Yankee Nuclear Power Station

|                       | Sample Deliv | Sample Delivery Group 3Y-YR-003 |        |           | 3Y-YR-003   |        |           |             | 3Y-YR-0 | 03        | 3Y-YR-003   |        |           | 3Y-YR-003   |        | 03               |             |
|-----------------------|--------------|---------------------------------|--------|-----------|-------------|--------|-----------|-------------|---------|-----------|-------------|--------|-----------|-------------|--------|------------------|-------------|
|                       | Lab          | Sample Id                       |        | 2488110   | 06          |        | 2488110   | 07          |         | 2488110   | 08          |        | 2488110   | 09          |        | 2488110          | 10          |
|                       |              | Location                        |        | MW-107    | °C          |        | MW-107    | 'D          |         | MW-107    | Έ           |        | MW-107    | 7F          | P      | <i>l</i> onroe D | am          |
|                       | Sa           | mple Date                       |        | 3/4/201   | 0           |        | 3/2/2010  |             |         | 3/3/201   | 0 .         |        | 3/3/201   | 0           |        | 3/3/2010         |             |
|                       |              | Sample ID                       |        | MW-107    | °C          | · .    | MW-107    | 'D          |         | MW-107    | E           |        | MW-107    | 7F          | M      | /Ionroe D        | am          |
|                       |              | Qc Code                         |        | FS        |             |        | FS        |             |         | FS        |             | 1.0    | FS        |             |        | FS               |             |
| Analysis              | Parameter    | Units                           | Result | Qualifier | Uncertainty | Result | Qualifier | Uncertainty | Result  | Qualifier | Uncertainty | Result | Qualifier | Uncertainty | Result | Qualifier        | Uncertainty |
| EPA 901.1             | Antimony-125 | pCi/L                           | 3.57   | U         | 4.52        | -2.54  | U         | 5.82        | -1.44   | U         | 4.99        | -3.21  | U         | 4.6         | 1.05   | U                | 5.51        |
| EPA 901.1             | Cesium-134   | pCi/L                           | 1.19   | U         | 2.22        | 1.95   | U         | 3.56        | -1.83   | U         | 2.19        | 1.44   | U         | 2           | -0.439 | U                | 2.45        |
| EPA 901.1             | Cesium-137   | pCi/L                           | -0.5   | U         | 1.75        | -1.75  | U         | 3.16        | 0.365   | U         | 2.18        | 0.725  | U         | 1.65        | 0.871  | U                | 2.06        |
| EPA 901.1             | Cobalt-60    | pCi/L                           | 1.2    | U         | 1.76        | 0.203  | U         | 2.75        | 3.37    | U         | 2.19        | 0.163  | U         | 1.77        | 0.804  | U                | 1.75        |
| EPA 901.1             | Europium-152 | pCi/L                           | -2.51  | U         | 5.26        | -1.58  | U         | 6.12        | -0.874  | U         | 5.74        | -1.16  | U         | 5.36        | 1.32   | U                | 6.25        |
| EPA 901.1             | Europium-154 | pCi/L                           | 0.769  | U         | 4.65        | 0.832  | U         | 7.35        | -1.16   | υ         | 5.27        | 2.78   | U         | 4.25        | -0.9   | U                | 5.47        |
| EPA 901.1             | Europium-155 | pCi/L                           | -1.22  | U         | 5.27        | 4.13   | U         | 7.02        | -4.76   | U         | 6.88        | 2.23   | U         | 6.03        | 0.595  | U                | 8.72        |
| EPA 901.1             | Niobium-94   | pCi/L                           | -0.221 | U         | 1.58        | 0.597  | U .       | 2.3         | 0.6     | U         | 1.82        | -0.009 | U         | 1.47        | 1.66   | U                | 2.16        |
| EPA 901.1             | Silver-108   | pCi/L                           | -1.17  | U         | 1.53        | -0.787 | U         | 1.84        | 1.07    | υ         | 1.57        | -1.26  | U         | 1.6         | -0.178 | U                | 1.92        |
| EPA 905.0 Modified    | Strontium-90 | pCi/L                           | 0.374  | U         | 0.918       | 0.671  | U         | 0.909       | -0.0495 | U         | 0.844       | 0.104  | U         | 0.843       | -0.367 | U                | 0.76        |
| EPA 906.0 Modified    | Tritium      | pCi/L                           | 20100  |           | 3950        | 7280   |           | 1480        | 5470    |           | 1130        | 8940   |           | 1800        | 39.8   | U                | 101         |
| Notes:                |              |                                 |        | *****     |             |        |           |             |         |           |             |        |           |             |        |                  |             |
| FS = Field Sample     |              |                                 |        |           |             |        | • •       |             |         |           |             |        |           |             |        |                  |             |
| FD = Field Duplicate  |              |                                 |        |           |             |        |           |             |         |           |             |        |           |             |        | 1                |             |
| EB = Equipment Blan   | k            |                                 |        | *****     |             |        |           |             |         |           |             |        |           |             |        |                  |             |
| pCi/L = Picocuries pe | r liter      |                                 |        |           |             |        |           |             |         |           |             |        |           |             |        |                  |             |
| U = Not detected      |              |                                 |        |           |             |        |           |             |         |           |             |        |           |             |        |                  |             |

#### APPENDIX B-1 Radiological Data - March 2010

#### Yankee Nuclear Power Station

| l                     | Sample Deliv | ery Group |        | 3Y-YR-0   | 03          |        | 3Y-YR-0   | 03          |        | 3Y-YR-0   | 03          |         | 3Y-YR-0   | 03          |
|-----------------------|--------------|-----------|--------|-----------|-------------|--------|-----------|-------------|--------|-----------|-------------|---------|-----------|-------------|
|                       | Lab          | Sample Id |        | 2488110   | )11         |        | 2488110   | 12          |        | 2488110   | 13          |         | 2488110   | 14          |
|                       |              | Location  |        | SP-1      |             |        | SW-01     | 1           |        | SW-40     | В .         |         | QC        |             |
|                       | Sa           | mple Date |        | 3/3/201   | 0           |        | 3/3/201   | 0 .         |        | 3/3/201   | 0           |         | 3/4/201   | 0           |
|                       |              | Sample ID |        | SP-1      |             |        | SW-01     | 1           |        | SW-40     | В           |         | EB-003    | 3           |
| ·                     | 1            | Qc Code   |        | FS        |             |        | FS        |             |        | FS        |             | EB      |           |             |
| Analysis              | Parameter    | Units     | Result | Qualifier | Uncertainty | Result | Qualifier | Uncertainty | Result | Qualifier | Uncertainty | Result  | Qualifier | Uncertainty |
| EPA 901.1             | Antimony-125 | pCi/L     | -1.22  | U         | 4.64        | -2.15  | U         | 5.58        | -1.08  | U         | 6.09        | 7.12    | U         | 5.39        |
| EPA 901.1             | Cesium-134   | pCi/L     | 0.758  | U         | 2.09        | 1.23   | U         | 2.29        | 2.32   | U         | 2.53        | 2.43    | U         | 2.24        |
| EPA 901.1             | Cesium-137   | pCi/L     | 0.345  | U         | 1.76        | 0.163  | U         | 1.93        | -1.51  | U         | 2.32        | 0.697   | U         | 1.89        |
| EPA 901.1             | Cobalt-60    | pCi/L     | 1.01   | U         | 1.57        | 0.028  | U         | 2.44        | -0,396 | U         | 2.39        | -1.03   | U         | 1.94        |
| EPA 901.1             | Europium-152 | pCi/L     | -3.72  | U         | 4.8         | 4.19   | U         | 6.15        | 0.542  | U         | 6.2         | 2.47    | U         | 6.15        |
| EPA 901.1             | Europium-154 | pCi/L     | -1.11  | U         | 5.49        | 0.847  | U         | 6.15        | 4.29   | U         | 6.83        | -1.54   | U         | 5.33        |
| EPA 901.1             | Europium-155 | pCi/L     | -1.16  | U         | 6.37        | 7.04   | U         | 7.72        | 4.81   | U         | 8.82        | -1.77   | U         | 7.42        |
| EPA 901.1             | Niobium-94   | pCi/L     | 1.34   | U         | 1.74        | -0.214 | U         | 1.79        | 0.796  | U         | 2.12        | -0.0061 | U         | 1.95        |
| EPA 901.1             | Silver-108   | pCi/L     | 0.014  | U         | 1.49        | -1.71  | U         | 1.76        | -0.95  | U         | 1.94        | -0.908  | U         | 1.66        |
| EPA 905.0 Modified    | Strontium-90 | pCi/L     | 0.708  | U         | 0.94        | -0.108 | U         | 0.832       | 0.109  | U         | 0.872       | -0.273  | U         | 0.794       |
| EPA 906.0 Modified    | Tritium      | pCi/L     | 244    |           | 129         | 94.1   | U         | 104         | 74.3   | U         | 99.7        | -13.5   | U         | 88.3        |
| Notes:                |              |           |        |           | 1. A.       |        |           |             |        |           |             |         |           |             |
| FS = Field Sample     |              |           |        |           |             |        |           |             |        |           |             |         |           | -           |
| FD = Field Duplicate  |              |           |        |           |             |        |           |             |        |           |             |         |           |             |
| EB = Equipment Blan   | ik           |           |        |           |             |        |           |             |        |           |             |         |           | -           |
| pCi/L = Picocuries pe | er liter     |           |        |           |             |        |           |             |        |           |             |         |           |             |
| U = Not detected      |              |           |        |           |             |        |           |             |        |           |             |         |           |             |



#### Data Validation Summary Yankee Nuclear Power Station Rowe, Massachusetts SDG: 3Y-YR-003

#### Introduction:

Nine groundwater samples, four surface water samples, and one equipment blank were collected March 2, 2010, through March 4, 2010, at the Yankee Nuclear Power Station, located in Rowe, Massachusetts. The samples were analyzed for one or more of the following parameters: Tritium by Liquid Scintillation, Strontium-90 by GFPC, and Gamma Isotopes (Co-60, Cs-134, Cs-137, Nb-94, Sb-125, Eu-152, Eu-154, Eu-155, and Ag-108m) by Gamma Spectroscopy. Sample analyses for all parameters were performed by GEL Laboratories, LLC, located in Charleston, South Carolina.

A chemist review was performed on all samples and analyses using information supplied by the laboratory. The data package was validated using SAIC guidance – "Laboratory Data Validation Guidelines for Evaluating Radionuclide Analyses" (April 2002), DOE Guidance – "Evaluation of Radiochemical Data Usability" (April, 1997), and the Yankee Nuclear Power Station Groundwater Monitoring Program, Document RP-05, Rev. 3 (June 16, 2009).

The following samples collected during March 2010 are included in the data evaluation:

| Field Sample ID | GEL ID    | Sample Date | Comment               |
|-----------------|-----------|-------------|-----------------------|
| MW-102D         | 248811001 | 3/4/10      | Tritium, Sr-90, Gamma |
| MW-104A         | 248811002 | 3/2/10      | Tritium, Sr-90, Gamma |
| MW-104ADUP      | 248811003 | 3/2/10      | Tritium, Sr-90, Gamma |
| MW-105B         | 248811004 | 3/4/10      | Tritium, Sr-90, Gamma |
| MW-106A         | 248811005 | 3/4/10      | Tritium, Sr-90, Gamma |
| MW-107C         | 248811006 | 3/4/10      | Tritium, Sr-90, Gamma |
| MW-107D         | 248811007 | 3/2/10      | Tritium, Sr-90, Gamma |
| MW-107E         | 248811008 | 3/3/10      | Tritium, Sr-90, Gamma |
| MW-107F         | 248811009 | 3/3/10      | Tritium, Sr-90, Gamma |
| Monroe Dam      | 248811010 | 3/3/10      | Tritium, Sr-90, Gamma |
| SP-1            | 248811011 | 3/3/10      | Tritium, Sr-90, Gamma |
| SW-011          | 248811012 | 3/3/10      | Tritium, Sr-90, Gamma |
| SW-408          | 248811013 | 3/3/10      | Tritium, Sr-90, Gamma |
| EB-003          | 248811014 | 3/4/10      | Tritium, Sr-90, Gamma |

Data were evaluated for the following parameters:

- \* Collection and Preservation
- \* Holding Times
- \* Data Completeness
- \* Tracer Recoveries
- \* Blank Contamination
- \* Duplicates
- \* Laboratory Control Samples
- \* Matrix Spike/Matrix Spike Duplicates
- \* Target Compound Quantitation Miscellaneous

\* - all criteria were met for this parameter

U:\Yankee Rowe\March 2010 GW\Annual Report\Validation Memo\Rowe\_3Y-YR-003\_RAD.doc



One sample was logged into the laboratory and reported with an incorrect sample identification as noted below. Otherwise, all associated quality control parameters were within control limits, and sample results were determined to be usable as reported by the laboratory.

**Miscellaneous** 

All Parameters – Sample MW-104ADUP was incorrectly logged into the laboratory and reported as MW-104DUP. The sample identification was manually corrected on the hardcopy final results as well as the electronic data deliverable during data validation.

References:

Science Applications International Corporation (SAIC), 2002. "Laboratory Data Validation Guidelines for Evaluating Radionuclide Analyses." Thomas L Rucker, Ph.D. and C. Martin Johnson, Jr.; Revision 07, April, 2002.

Department of Energy (DOE). "Evaluation of Radiochemical Data Usability." April, 1997.

Yankee Nuclear Power Station, 2009. "YNPS Groundwater Monitoring Program." ISFSI Radiation Protection, RP-05, Rev. 3: June 16, 2009.

Data Validator: Julie Ricardi

U for Julie Ricardi Date: April 9, 2010 Signature

**APPENDIX B-2** 

## CHEMICAL DATA - MARCH 2010

|                                       |          | ·                                     | Location    | CF      | W-6       | S      | N-4       | S         | N-5       | CF     | N-5                                          |
|---------------------------------------|----------|---------------------------------------|-------------|---------|-----------|--------|-----------|-----------|-----------|--------|----------------------------------------------|
|                                       |          | · · · · · · · · · · · · · · · · · · · | Sample Date | 2/2     | /2010     | 2/2    | 2010      | 2/2/      | 2010      | 2/2/   | 2010                                         |
|                                       |          |                                       | Sample Date | 3/2/    | 2010      | 3/2/   | 2010      | 3/2/      | 2010      | 3/2/1  | 2010                                         |
| · · · · · · · · · · · · · · · · · · · |          |                                       | Sample ID   | CF      | ·W-6      | S      | N-4       | S∖        | V-5       |        | W-5                                          |
|                                       |          |                                       | Qc Code     | F       | FS        | 1      | -s        | F         | S         | F      | S                                            |
| Analysis                              | Fraction | Param Name                            | Units       | Result  | Qualifier | Result | Qualifier | Result    | Qualifier | Result | Qualifier                                    |
| EPA 8260B                             | т        | 1 1 1 2-Tetrachloroethane             | ug/l        | 1       | 11        | 1      | 11        | 1         | 11        | 1      | 11                                           |
|                                       | -<br>-   | 1,1,1,2-1 cuacinor ocularie           | ug/L        | 4       |           |        |           |           |           | 1      |                                              |
| EFA 0200D                             |          | 1,1,1-Inchloroethane                  | ug/L        | 1       | U         |        | U         | 1         | U         | 1      | U .                                          |
| EPA 8260B                             | l.       | 1,1,2,2-letrachloroethane             | ug/L        | 1       | U         | 1      | U         | 1         | U         | 1      | U                                            |
| EPA 8260B                             | Т        | 1,1,2-Trichloroethane                 | ug/L        | 1       | U         | 1      | U         | 1         | U         | 1      | U                                            |
| EPA 8260B                             | Т        | 1.1-Dichloroethane                    | ug/l        | 1       | U         | 1      | U         | 1         | U         | 1      | 11                                           |
| EPA 8260B                             | T        | 1 1 Dichloroothono                    | ug/L        | . 1     | U U       |        | U         |           | Ŭ.        | 1      | Ŭ,                                           |
|                                       |          |                                       | ug/L        |         | 0         |        | 0         | 1         | 0         | 1      |                                              |
| EPA 8260B                             | 1        | 1,2,3- I richlorobenzene              | ug/L        | 1       | U         | 1      | U         | 1         | U         | 1      | U                                            |
| EPA 8260B                             | Т        | 1,2,4-Trichlorobenzene                | ug/L        | 1       | U         | 1      | U         | 1         | U         | 1      | UJ                                           |
| EPA 8260B                             | T        | 1,2-Dibromoethane                     | ug/L        | 1       | U         | . 1    | U         | 1         | U         | 1      | U                                            |
| EPA 8260B                             | Т        | 1 2-Dichlorobenzene                   | 1/0/1       | 1       | 11        | 1      | 11        | 1         | 11        | 1      | 11                                           |
| EPA 8260B                             | Т        | 1.2 Dichloroothano                    | ug/L        |         | 1         |        |           |           | <u>.</u>  |        | Ŭ.                                           |
|                                       |          |                                       | uy/L        | · · · · | 0         |        |           |           | 0         |        | 0                                            |
| EFA 0200B                             | 1        | 1,2-Dichloropropane                   | ug/L        |         | U         |        | U         | 1         | U         | 1      | U                                            |
| EPA 8260B                             | T        | 1,3-Dichlorobenzene                   | ug/L        | 1       | U         | 1      | U         | 1         | U         | 1      | U                                            |
| EPA 8260B                             | Т        | 1,3-Dichloropropane                   | ug/L        | 1       | U         | . 1    | U         | 1         | U         | 1      | U                                            |
| EPA 8260B                             | Т        | 1.4-Dichlorobenzene                   | ua/L        | 1       | U         | 1      | U         | 1         | U         | 1      | U U                                          |
| EPA 8260B                             | т        | Acetone                               | ug/L        | . 1     | 11        | . 1    | Ŭ.        |           | 11        | 1      | ü l                                          |
|                                       |          | Destant                               | ug/L        |         | 0         | 1      | 0         | 1         | 0         | 1      |                                              |
| LEA 0200D                             | 1<br>    | Delizene                              | ug/L        | 1       | U         | 1      | U         | 1         | U         | 1      | U                                            |
| EPA 8260B                             | 1        | Bromodichloromethane                  | ug/L        | 1       | U         | 1      | U         | 1         | U         | 1      | U                                            |
| EPA 8260B                             | Т        | Bromoform                             | ug/L        | 1       | U         | 1      | U         | 1         | U         | 1      | U                                            |
| EPA 8260B                             | Т        | Bromomethane                          | ua/L        | 1       | U         | 1      | U         | 1         | U         | 1      | υl                                           |
| FPA 8260B                             | Т        | Carbon tetrachloride                  |             | 1       | li.       | 1      | h.        | 1         | <u> </u>  | 4      | <u> </u>                                     |
| EDA 8260D                             | T        | Chlorohonzono                         | uy/L        | ا<br>م  | <u> </u>  |        |           |           | <u>.</u>  |        | <u>.                                    </u> |
| EDA 00000                             |          | Chlorobertzene                        | ug/L        | 1       | U         | 1      | U         | 1         | <u>U</u>  | 1      | <u>u</u> ·                                   |
| EPA 8260B                             | 1        | Chlorodibromomethane                  | ug/L        | 1       | U         | 1      | U         | 1         | U         | 1      | U                                            |
| EPA 8260B                             | Т        | Chloroform                            | ug/L        | 1       | U         | 1      | U         | 1         | U         | 1      | U                                            |
| EPA 8260B                             | Т        | Cis-1.2-Dichloroethene                | ua/L        | 1       | U         | 1      | U         | 1         | U         | 1      | U                                            |
| EPA 8260B                             | Т        | cis_1 3-Dichloropropene               | ug/L        | 1       | 11        |        | ŭ         |           | <u> </u>  | 1      |                                              |
|                                       |          |                                       | ug/L        |         | 0         |        | 0         | 1         | 0         |        |                                              |
| EPA 8260B                             | 1        | Etnyi benzene                         | ug/L        | 1       | U         | 1      | U         | 1         | U         | 1      | 0                                            |
| EPA 8260B                             | T        | Methylene chloride                    | ug/L        | 1       | U         | 1      | U         | 1         | U         | 1      | U                                            |
| EPA 8260B                             | Т        | Naphthalene                           | ug/L        | 1       | U         | 1      | U         | 1         | U         | 1      | UJ                                           |
| EPA 8260B                             | Т        | Styrene                               | ug/l        | 1       | 11        | 1      | 11        | 1         | 11        | 1      | Ú.                                           |
| EPA 8260B                             | T        | Tetrachloroothono                     | ug/L        |         | U U       | 1      |           | 4         | 11        |        | ŭ                                            |
|                                       |          | Teluaciiloioeulelle                   | ug/L        | l       | 0         | 1      | 0         |           | 0         | 1      | 0                                            |
| EPA 8260B                             |          | loiuene                               | ug/L        | 1       | U         | 1      | U         | 1         | U         | 1      | U .                                          |
| EPA 8260B                             | T        | trans-1,2-Dichloroethene              | ug/L        | 1       | U         | 1      | U         | 1         | U         | · 1    | U                                            |
| EPA 8260B                             | Т        | trans-1,3-Dichloropropene             | ug/L        | 1       | U         | 1      | U         | 1         | U         | 1      | U                                            |
| EPA 8260B                             | Т        | Trichloroethene                       | ua/L        | 1       | U         | 1      | U         | 1         | U         | 1      | u                                            |
| EPA 8260B                             | Т        | Vinyl chloride                        | ug/l        | 1       | 11        | 1      | 11        | 1         | 11        | 1      | <del>.</del> .                               |
|                                       |          | Vulence, Tetel                        | ug/L        | 4       |           | 4      |           |           |           |        |                                              |
| EPA 0200B                             | 1        | Aylenes, Total                        | ug/L        | 1       | U         | 1      | U         | 1         | U         | 1      | U                                            |
| EPA 6010B                             | I        | Arsenic                               | mg/L        | 0.01    | U         | 0.01   | U         | 0.01      | U         | 0.01   | 0                                            |
| EPA 6010B                             | Т        | Barium                                | mg/L        | 0.05    | U         | 0.05   | U         | 0.05      | U         | 0.053  |                                              |
| EPA 6010B                             | Т        | Cadmium                               | ma/L        | 0.004   | U         | 0.004  | U         | 0.004     | U         | 0.004  | U                                            |
| FPA 6010B                             | т        | Calcium                               | ma/l        | 14      |           | 24     |           | 2         | -         | 28     |                                              |
| EDA 6010B                             | <u>г</u> | Chromium                              | mg/L        | 0.01    | 11        | 0.01   | 11        | 0.01      | 11        | 0.01   |                                              |
|                                       |          | Chiomun                               | niy/L       | 0.01    | 0         | 0.01   | 0         | 0.01      | 0         | 0.01   | 0                                            |
| EPA 6010B                             | 1        | Copper                                | mg/L        | 0.01    | U         | 0.01   | U         | 0.01      | U         | 0.01   | U                                            |
| EPA 6010B                             | Т        | Iron                                  | mg/L        | 20      |           | 0.9    |           | 0.27      |           | 70     |                                              |
| EPA 6010B                             | Т        | Lead                                  | mg/L        | 0.01    | U         | 0.01   | U         | 0.01      | U         | 0.01   | U                                            |
| EPA 6010B                             | Т        | Manganese                             | ma/l        | 29      |           | 0.13   |           | 0.044     |           | 3.8    |                                              |
| EPA 6010B                             | τ.       | Selenium                              | ma/l        | 0.04    | 11        | 0.10   | 11        | 0.044     | 11        | 0.0    | I                                            |
|                                       | +        | Cibuor                                | iliy/L      | 0.01    | 0         | 0.01   | 0         | 0.01      | 5         | 0.021  | <u>.                                    </u> |
| EPA OUTUB                             | 1        | Silver                                | mg/L        | 0.005   | U         | 0.005  | U         | 0.005     | U         | 0.005  | U                                            |
| EPA 6010B                             | 1        | Sodium                                | mg/L        | 2.7     |           | 0.65   |           | 0.6       |           | 2.9    |                                              |
| EPA 6010B                             | Т        | Thallium                              | mg/L        |         |           |        |           |           |           |        |                                              |
| EPA 6010B                             | Т        | Zinc                                  | ma/L        | 0.02    | U         | 0.02   | U         | 0.02      | U         | 0.02   | υ                                            |
| EPA 6010B                             | D        | Arsenic                               | ma/l        |         | -         |        | -         |           |           |        | -                                            |
| EPA 6010P                             | n -      | Barium                                | ma/l        |         |           |        |           |           |           |        |                                              |
|                                       | D        |                                       | nıy/L       |         |           |        |           |           |           |        |                                              |
| EPA OUTUB                             | U        | Cadmium                               | mg/L        |         |           |        | · · · · · |           | ·         |        |                                              |
| EPA 6010B                             | ם        | Chromium                              | mg/L        |         |           |        |           | · · · · · |           |        |                                              |
| EPA 6010B                             | D        | Lead                                  | mg/L        |         |           |        |           |           |           |        |                                              |
| EPA 6010B                             | D        | Selenium                              | ma/l        |         |           |        | · ·       |           |           |        |                                              |
| EDA 6010B                             | n        | Silvor                                | mg/L        |         |           |        |           |           |           |        |                                              |
|                                       | T        | Marouni                               | mg/L        | 0.0000  | 1.1       | 0.0000 | 11        | 0.0000    |           | 0.0000 |                                              |
| EPA /4/UA                             | 1        | wercury                               | mg/L        | 0.0002  | U         | 0.0002 | U         | 0.0002    | U         | 0.0002 | U                                            |
| EPA 7470A                             | ט        | Mercury                               | mg/L        |         | <u> </u>  |        |           |           |           |        |                                              |
| EPA 9056                              | T        | Chloride                              | mg/L        | 2.7     | J         | 2      | UJ        | 2         | UJ        | 5.1    | J                                            |
| EPA 9056                              | Т        | Nitrate as N                          | ma/l        | 0.5     | U         | 0.5    | U         | 05        | 11        | 0.5    | 1                                            |
| EDA 0056                              | T        | Sulfato                               | mg/L        | 4.0     | 1         | 4.0    | 5         | 0.0       | 5         | 0.0    |                                              |
|                                       |          |                                       | nig/L       | 4.3     | J         | 4.8    | J         | 4.2       | J         | 1      | <u>v</u>                                     |
| HOR-INELAC 3.3.13                     | 1        | 2-Butanone                            | ug/L        | 5       | U         | 5      | U         | 5         | U         | 5      | U                                            |
| non-NELAC 3.3.13                      | Т        | 4-Methyl-2-pentanone                  | ug/L        | 1       | U         | 1      | U         | 1         | U         | 1      | υ                                            |
| non-NELAC 3.3.13                      | Т        | Methyl Tertbutyl Ether                | ua/L        | 1       | U         | 1      | U         | 1         | U         | 1      | U I                                          |
| SM 2320B                              | Т        | Total Alkalinity as CoCO2             | <br>ma/l    | 71      |           | 65     |           | 1 1 2     | -         | 110    | -                                            |
| SM 2540 C                             | -<br>-   | Total Dissolved Solida                | mc/l        |         | 1         | 0.0    |           | 4.5       |           | 400    | ,                                            |
| ON 4500 CH CC                         | <br>     |                                       | rng/∟       | 89      | J         | 11     | J         | 4         | J         | 130    | J                                            |
| SIVI 4500 CN-C&E                      |          | Cyanide, Lotal                        | mg/L        | 0.01    | U         | 0.01   | U         | 0.01      | U         | 0.01   | U                                            |
| SM 5220C                              | T.       | Chemical Oxygen Demand                | mg/L        | 12      |           | 11     | U         | 11        | U         | 29     |                                              |

|                                        |           |                                       | CF       | W-5                                   |             | )C        | CF     | W-1       | SI           | N-1       | SI         | N-2       |
|----------------------------------------|-----------|---------------------------------------|----------|---------------------------------------|-------------|-----------|--------|-----------|--------------|-----------|------------|-----------|
|                                        |           | · · · · · · · · · · · · · · · · · · · | 3/2      | 2010                                  | 3/2/        | 2010      | 3/3/   | 2010      | 3/3/         | 2010      | 3/3/       | /2010     |
|                                        |           |                                       |          | 5 Dup                                 |             | 005       |        | 10/1      | 12           | A/_ 1     | SI         | A/ 2      |
| ······································ |           |                                       |          | -5 Dup                                |             | -005      |        |           |              | -0        |            |           |
| A                                      |           | D                                     | 1        | -0                                    | <b>D</b> 11 | D I'C     |        | -3        | T<br>Descrit | -3        |            | -3        |
| Analysis                               | Fraction  | Param Name                            | Result   | Qualifier                             | Result      | Qualifier | Result | Qualifier | Result       | Qualifier | Result     | Qualifier |
| EPA 8260B                              | 1         | 1,1,1,2-1 etrachloroethane            | 1        | U                                     | 1           | U         | 1      | U         | 1            | U         | 1          | U         |
| EPA 8260B                              | Т         | 1,1,1-Trichloroethane                 | 1        | U                                     | 1           | U         | 1      | U         | 1            | U         | 1          | U         |
| EPA 8260B                              | T         | 1,1,2,2-Tetrachloroethane             | 1        | U                                     | 1           | U         | 1      | U         | 1            | U ·       | 1          | U         |
| EPA 8260B                              | Т         | 1,1,2-Trichloroethane                 | 1        | U                                     | 1           | U         | 1      | U         | - 1          | U         | 1          | U         |
| EPA 8260B                              | Т         | 1,1-Dichloroethane                    | . 1      | U                                     | 1           | U         | 1      | U         | 1            | U         | 1          | U         |
| EPA 8260B                              | Т         | 1,1-Dichloroethene                    | 1        | U                                     | 1           | U         | 1      | U         | 1            | U         | 1          | U         |
| EPA 8260B                              | Т         | 1.2.3-Trichlorobenzene                | 1        | U                                     | 1           | U         | 1      | U         | 1            | U         | 1          | U         |
| EPA 8260B                              | Ť         | 1 2 4-Trichlorobenzene                | 1        | U.I                                   | 1           | 1         | 1      | Ū         | 1            | Ū.        | 1          | Ū         |
| EPA 8260B                              | т         | 1.2. Dibromoethane                    |          | 11                                    | 1           | <u>.</u>  | 1      | 11        | 1            | U .       | 1          | U ·       |
| EDA 8260D                              | т<br>Т    | 1.2 Dichlorobonzono                   | 1        |                                       | 1           | <u> </u>  | 4      | 11        | 1            |           | 1          |           |
|                                        | <u>г</u>  | 1,2-Dichloroothono                    |          | U                                     | 4           |           | 1      | 0         | 1            | 0         |            | 0         |
|                                        | <u>г</u>  | 1,2-Dichloropropono                   |          | 0                                     | 1           | <u>U</u>  |        | 0         | 1            | 0         |            | 0         |
|                                        | 1<br>     | 1.2-Dichloroproparie                  | 1        | 0                                     |             | <u> </u>  |        | 0         |              | 0         |            | 0         |
| EPA 8260B                              | -         | 1,3-Dichlorobenzene                   |          | U                                     | 1           | 0         | 1      | 0         | 1            | 0         |            | 0         |
| EPA 8260B                              |           | 1,3-Dichloropropane                   | 1        | U                                     | 1           | <u>U</u>  | 1      | U         | 1            | U         | 1          | U         |
| EPA 8260B                              | Т         | 1,4-Dichlorobenzene                   | 1        | U                                     | 1           | U         | 1 1    | U         | 1            | U         | 1          | U         |
| EPA 8260B                              | Т         | Acetone                               | 1        | U                                     | 1           | U         | 1      | U         | 1            | U         | 1          | υ         |
| EPA 8260B                              | Т         | Benzene                               | 1        | U                                     | 1           | U         | 1      | U         | 1            | U         | 1          | U         |
| EPA 8260B                              | Т         | Bromodichloromethane                  | 1        | U                                     | 1           | U         | 1      | U         | 1            | U         | 1          | U         |
| EPA 8260B                              | Т         | Bromoform                             | 1        | U                                     | 1           | U         | 1      | U         | 1            | U         | 1          | U         |
| EPA 8260B                              | Т         | Bromomethane                          | 1        | U                                     | 1           | U         | 1      | U         | 1            | U         | 1          | U         |
| EPA 8260B                              | Т         | Carbon tetrachloride                  | 1        | U                                     | 1           | U         | 1      | U         | 1            | U         | 1          | U         |
| EPA 8260B                              | Т         | Chlorobenzene                         | 1        | Ū                                     | 1           | Ū         | 1      | U         | 1            | Ü         | 1          | U         |
| EPA 8260B                              | Ť         | Chlorodibromomethane                  | . 1      | U                                     | 1           | Ū.        | 1      | U         | 1            | U U       | 1          | U U       |
| EPA 8260B                              | T         | Chloroform                            | 1        |                                       | 1           | <u> </u>  | · ·    | U         | 1            | Ŭ         | 1          | U         |
| EPA 8260B                              | T         | Cis_1 2-Dichloroethene                | 1        | Ŭ.                                    | 1           | 11        | 1      |           | 1            | U I       | 1          | 0         |
| EDA 8260B                              | т<br>Т    | cis 1.2 Dichloropropopo               | 1        | 0                                     | 1           |           | 1      |           | 1            | 0         | 1          | U         |
|                                        | <u>г</u>  |                                       | 1        | 0                                     | 1           |           |        | 0         | 4            | 0         |            | 0         |
|                                        | 1<br>+    | Etriyi Denzene                        |          | U                                     |             |           |        | 0         |              | U         |            | 0         |
| EPA 8260B                              | -         | Methylene chloride                    |          | U                                     | 1           | <u>U</u>  |        | 0         |              | U         |            | U         |
| EPA 8260B                              | <u> </u>  | Naphthalene                           | 1        | UJ                                    | 1           | <u>U</u>  | 1      | U         | 1            | U         | 1          | U         |
| EPA 8260B                              |           | Styrene                               | 1        | U                                     | 1           | U         | 1      | U         | 1            | U         | 1          | U         |
| EPA 8260B                              | Т         | Tetrachloroethene                     | 1        | U                                     | 1           | U         | 1      | U         | 1            | U         | 1          | U         |
| EPA 8260B                              | T         | Toluene                               | 1        | U                                     | 1           | U         | 1      | U         | 1            | U         | 1          | U         |
| EPA 8260B                              | Т         | trans-1,2-Dichloroethene              | 1        | U                                     | 1           | U         | 1      | U         | 1            | U         | 1          | U         |
| EPA 8260B                              | Т         | trans-1,3-Dichloropropene             | 1        | υ                                     | 1           | U         | 1      | U         | 1            | U         | 1          | U         |
| EPA 8260B                              | Т         | Trichloroethene                       | 1        | U                                     | 1           | U         | 1      | U         | . 1          | U         | 1          | U         |
| EPA 8260B                              | Т         | Vinyl chloride                        | 1        | U                                     | 1           | U         | 1      | U         | 1            | U         | 1          | U         |
| EPA 8260B                              | т         | Xvlenes, Total                        | 1        | U                                     | 1           | U         | 1      | U         | 1            | U         | 1          | U         |
| EPA 6010B                              | т         | Arsenic                               | 0.01     | Ū                                     |             |           | 0.01   | U         | 0.01         | Ŭ         | 0.01       | U         |
| EPA 6010B                              | т         | Barium                                | 0.053    |                                       |             |           | 0.05   | Ü         | 0.05         | Ü         | 0.05       | ū         |
| EPA 6010B                              | т         | Cadmium                               | 0.004    | 11                                    |             |           | 0.004  | Ŭ         | 0.004        | Ü         | 0.004      | u         |
| EPA 6010B                              | Ť         | Calcium                               | 27       | <b>.</b>                              |             |           | 13     | <u> </u>  | 2.6          | <b>.</b>  | 25         | <b>U</b>  |
| EPA 6010B                              | т         | Chromium                              | 0.01     | 11                                    |             |           | 0.01   | 11        | 0.01         | 11 .      | 0.01       | 11        |
| EPA 6010B                              | Т         | Coppor                                | 0.01     | U U                                   |             |           | 0.01   | 0         | 0.01         |           | 0.01       | U         |
|                                        | T         | Iron                                  | 71       | 0                                     |             |           | 57     | 0         | 0.01         | 0         | 0.01       | 0         |
|                                        | T         |                                       | 0.01     | 11                                    |             |           | 0.01   | 11        | 0.032        | 11        | 0.037      | 11        |
|                                        | 1<br>T    | Leau                                  | 0.01     | U                                     |             |           | 0.01   | U         | 0.01         | 0         | 0.01       | U         |
| EPA OUTUB                              | 1         | Manganese                             | 3.7      |                                       |             |           | 0.2    |           | 0.01         | 0         | 0.01       | 0         |
| EPA 6010B                              |           | Selenium                              | 0.022    | J                                     |             |           | 0.01   | U         | 0.01         | U         | 0.01       | U         |
| EPA OUTUB                              |           |                                       | 0.005    | U                                     |             |           | 0.005  | U         | 0.005        | U         | 0.005      | U         |
| EPA 6010B                              |           | Sodium                                | 2.9      |                                       | · · · · · · |           | 0.81   |           | 0.78         |           | 0.8        |           |
| EPA 6010B                              |           | I hallium                             |          |                                       |             |           |        |           |              |           |            |           |
| EPA 6010B                              | 1         | Zinc                                  | 0.02     | U                                     |             |           | 0.02   | U         | 0.02         | U         | 0.02       | U         |
| EPA 6010B                              | D         | Arsenic                               |          |                                       |             |           |        |           |              |           |            |           |
| EPA 6010B                              | D         | Barium                                |          |                                       |             |           |        |           |              |           |            | -         |
| EPA 6010B                              | D         | Cadmium                               |          |                                       |             |           |        |           |              |           |            |           |
| EPA 6010B                              | D         | Chromium                              |          |                                       |             |           |        |           |              |           |            |           |
| EPA 6010B                              | D         | Lead                                  |          |                                       |             |           |        |           |              |           |            |           |
| EPA 6010B                              | D         | Selenium                              |          | · · · · · · · · · · · · · · · · · · · |             |           |        |           | 1. C. 1.     |           |            |           |
| EPA 6010B                              | D         | Silver                                |          |                                       |             |           |        |           |              |           |            |           |
| EPA 7470A                              | Т         | Mercury                               | 0.0002   | U                                     |             |           | 0.0002 | U         | 0.0002       | U         | 0.0002     | U         |
| EPA 7470A                              | D         | Mercury                               |          | -                                     |             |           |        |           |              | -         |            | -         |
| EPA 9056                               | T         | Chloride                              | 5        | .1                                    |             |           | 2 2    | U.I       | 2            | U.I       | 2          | UI        |
| EPA 9056                               | ι.<br>Τ   | Nitrate as N                          | 0.5      | U                                     |             |           | 0.5    | 11        |              | 00        | 0.5        | U U       |
| EPA 9056                               | T         | Sulfata                               | 0.0      | 0                                     |             |           | 20.0   |           | 0.0<br>E E   | -         | 0.0<br>E F | <u> </u>  |
| non-NELAC 2 2 42                       | <b>T</b>  | 2 Butanono                            | . 1      | U                                     |             | 11        | 2.0    | 11        | 5.5          | 11        | 5.5        | 11        |
| non NELAC 3.3.13                       | <b>1</b>  | 4 Mothyl 2 nontonen                   | <u>ح</u> | 0                                     | <b>5</b>    |           | 0      | U U       | C 1          |           |            | 0         |
| HON-INELAC 3.3.13                      | <br>      | 4-ivietriyi-2-pentanone               | 1        |                                       | <u>1</u>    | 0         | 1      | U         |              | U         | <u> </u>   | U         |
| HON-INELAC 3.3.13                      | <br>      | Ivietnyi Tertbutyi Ether              | 1        | U                                     | 1           | U         | 1 1    | U         | 1            | U         | 1 1        | U         |
| SM 2320B                               | <u>  </u> | I otal Alkalinity, as CaCO3           | 140      |                                       | <b> </b>    |           | 4.6    |           | 5.4          |           | 5.4        | L         |
| SM 2540 C                              | Γ         | 1 otal Dissolved Solids               | 140      | J                                     | ļ           |           | 1      | UJ        | 19           | J         | 19         | J         |
| SM 4500 CN-C&E                         | Т         | Cyanide, Total                        | 0.01     | U                                     |             |           | 0.01   | U         | 0.01         | U         | 0.01       | U         |
| SM 5220C                               | Т         | Chemical Oxygen Demand                | 26       |                                       |             |           | 11     | U         | 11           | U         | 11         | U         |

Prepared by:BJS Date:4/12/10 Checked by:BBL Date:4/12/10

|                                          |               | SW-3 SP-1                             |          | P-1       | (      | <u> </u>    | SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /-408     | SM                                                                                                              | J-011     |        |           |
|------------------------------------------|---------------|---------------------------------------|----------|-----------|--------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------|-----------|--------|-----------|
|                                          |               |                                       | 3/3      | /2010     | 3/3    | /2010       | 3/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /2010     | 3/3                                                                                                             | /2010     | 3/2    | /2010     |
|                                          |               |                                       | 5/5      | 12010     | 0/0    | D 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 006       | 5/5/<br>C1A                                                                                                     | 1 409     | 0/0/   | 1011      |
| en e |               | · · · · · · · · · · · · · · · · · · · | 3        | VV-3      | . 3    | <b>F</b> -1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -006      | 50                                                                                                              | 7-408     | 50     | 7-011     |
|                                          |               |                                       |          | FS        |        | -5          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IB        |                                                                                                                 | -5        |        | -5        |
| Analysis                                 | Fraction      | Param Name                            | Result   | Qualifier | Result | Qualifier   | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Qualifier | Result                                                                                                          | Qualifier | Result | Qualifier |
| EPA 8260B                                | Т             | 1,1,1,2-Tetrachloroethane             | 1        | U         | 1      | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
| EPA 8260B                                | T             | 1,1,1-Trichloroethane                 | 1        | U         | 1      | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
| EPA 8260B                                | Т             | 1,1,2,2-Tetrachloroethane             | 1        | U         | 1      | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
| EPA 8260B                                | Т             | 1.1.2-Trichloroethane                 | 1        | U         | 1      | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        | -         |
| EPA 8260B                                | т             | 1 1-Dichloroethane                    | . 1      | Ŭ.        | 1      | ŭ .         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>  |                                                                                                                 |           |        |           |
|                                          | т             | 1,1-Dichloroothane                    | 4        | 0         | 4      | 0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0         |                                                                                                                 |           |        |           |
|                                          | <u>і</u><br>т | 1, 1-Dichlorohenene                   | 1        | U         | 1      | 0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0         |                                                                                                                 |           |        |           |
| EPA 8260B                                | -             | 1,2,3-1 richlorobenzene               | 1        | U         | 1      | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
| EPA 8260B                                | T             | 1,2,4-Trichlorobenzene                | 1        | U         | 1      | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           | 1.1    |           |
| EPA 8260B                                | Т             | 1,2-Dibromoethane                     | 1        | U         | 1      | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
| EPA 8260B                                | Т             | 1,2-Dichlorobenzene                   | 1        | U         | 1      | U           | . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U         |                                                                                                                 |           |        |           |
| EPA 8260B                                | Т             | 1.2-Dichloroethane                    | 1        | U         | 1      | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
| EPA 8260B                                | т             | 1 2-Dichloropropane                   | 1        | U.        | 1      | Ū.          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11        |                                                                                                                 |           |        |           |
| EPA 8260B                                | т             | 1.3 Dichlorobenzene                   | 1        | U U       | 1      | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
|                                          | T             | 1,3-Dichlerenzene                     | 1        | 0         | 4      | 0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0         |                                                                                                                 |           |        |           |
| EPA 0200D                                | -             | 1,3-Dichloropropane                   | 1        | 0         | 1      | U           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U         |                                                                                                                 |           |        |           |
| EPA 8260B                                | 1             | 1,4-Dichlorobenzene                   | 1        | U         | 1      | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
| EPA 8260B                                | Т             | Acetone                               | 1        | U         | - 1    | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
| EPA 8260B                                | T             | Benzene                               | 1        | U         | 1      | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
| EPA 8260B                                | Т             | Bromodichloromethane                  | 1        | U         | 1      | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
| EPA 8260B                                | Т             | Bromoform                             | 1        | Ū.        | 1      | Ū.          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ū         |                                                                                                                 |           |        |           |
| EPA 8260B                                | T             | Bromomethane                          | 1        | 1         | 1      | -           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11        |                                                                                                                 |           |        |           |
| EPA 8260B                                | <u>+</u>      | Carbon tetrachlorido                  | 4        |           | 1      | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                 |           |        |           |
|                                          |               |                                       | 1        | 0         |        | 0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0         |                                                                                                                 |           |        |           |
| EPA 0200B                                |               | Chlorobenzene                         | 1        | U         | 1      | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
| EPA 8260B                                | 1             | Chlorodibromomethane                  | 1        | U         | 1      | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
| EPA 8260B                                | T             | Chloroform                            | 1        | U         | · 1    | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
| EPA 8260B                                | T             | Cis-1,2-Dichloroethene                | 1        | U         | 1      | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
| EPA 8260B                                | Т             | cis-1,3-Dichloropropene               | 1        | U         | 1      | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
| EPA 8260B                                | Т             | Ethyl benzene                         | 1        | U         | 1      | Ū           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ū         |                                                                                                                 |           |        |           |
| EPA 8260B                                | T             | Methylene chloride                    | 1        | Ŭ.        | 1      | U .         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>  |                                                                                                                 |           |        |           |
| EDA 8260B                                | T             | Nanhthalana                           | 1        | 0         | 1      | 11          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0         |                                                                                                                 |           |        |           |
|                                          |               | Naprilialene<br>Otimonia              | 4        | 0         | 1      | U           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U         |                                                                                                                 |           |        |           |
| EPA 8260B                                |               | Styrene                               | 1        | U         | 1      | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
| EPA 8260B                                | 1.            | letrachloroethene                     | 1        | U         | 1      | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
| EPA 8260B                                | T             | Toluene                               | 1        | U         | . 1    | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
| EPA 8260B                                | T             | trans-1,2-Dichloroethene              | 1        | U         | - 1    | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
| EPA 8260B                                | Т             | trans-1.3-Dichloropropene             | 1        | U         | 1      | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
| FPA 8260B                                | Т             | Trichloroethene                       | 1        | Ü         | 1      | u .         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | II.       |                                                                                                                 |           |        |           |
| EPA 8260B                                | T             | Vinyl chloride                        | 1        | U         | 1      | U ·         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                                                                                                                 |           |        |           |
|                                          | Т             | Viriyi chionde                        | I        | 0         | 1      | 0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0         |                                                                                                                 |           |        |           |
| EPA 0200D                                | -             | Aylenes, rotai                        |          | 0         | 1      | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
| EPA 6010B                                | <u> </u>      | Arsenic                               | 0.01     | U         | 0.005  | U           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                 |           |        |           |
| EPA 6010B                                | T             | Barium                                | 0.05     | U         | 0.026  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                 |           |        |           |
| EPA 6010B                                | T .           | Cadmium                               | 0.004    | U         | 0.0004 | U           | 1. Sec. 1. Sec |           | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |           |        |           |
| EPA 6010B                                | Т             | Calcium                               | 2.4      |           |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 1.00                                                                                                            |           |        |           |
| EPA 6010B                                | Т             | Chromium                              | 0.01     | U         | 0.005  | U           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                 |           |        |           |
| EPA 6010B                                | Т             | Copper                                | 0.01     | U.        |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                 |           |        |           |
| EPA 6010B                                | т             | Iron                                  | 0.01     | ·         |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                 |           |        |           |
|                                          | т             | Lood                                  | 0.0      |           | 0.002  | 11          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                 |           |        |           |
|                                          | 1<br>-        | Manager                               | 0.01     | 0         | 0.003  | 0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                 |           |        | ŀ         |
| EPA OUTUB                                | -             | Manganese                             | 0.0/4    |           |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                 |           |        |           |
| EPA 6010B                                |               | Selenium                              | 0.01     | U         | 0.01   | U           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                 |           |        |           |
| EPA 6010B                                | Γ             | Silver                                | 0.005    | U         | 0.007  | υ           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | `         |                                                                                                                 |           |        |           |
| EPA 6010B                                | Т             | Sodium                                | 0.6      | · · · ·   |        |             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                                                                                                                 |           |        |           |
| EPA 6010B                                | Т             | Thallium                              |          |           | 0.0028 | U .         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~         |                                                                                                                 |           |        |           |
| EPA 6010B                                | Т             | Zinc                                  | 0.02     | U         |        | ·           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                 |           |        |           |
| EPA 6010B                                | D             | Arsenic                               |          |           |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 0.01                                                                                                            | 11        | 0.01   | 11        |
| EPA 6010B                                | D             | Barium                                |          |           |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 0.011                                                                                                           | 0         | 0.011  | <b>.</b>  |
|                                          |               | Codmium                               |          |           |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 0.011                                                                                                           | 11        | 0.011  |           |
|                                          | <u>ר</u>      | Caulilium                             |          |           |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 0.01                                                                                                            | 0         |        | U         |
| EPA OUTUB                                | U<br>D        | Coromium                              |          |           |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 0.01                                                                                                            | U         | 0.01   | U         |
| EPA 6010B                                | D             | Lead                                  |          |           | •      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 0.01                                                                                                            | U         | 0.01   | U         |
| EPA 6010B                                | D             | Selenium                              | <u> </u> |           |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 0.05                                                                                                            | U         | 0.05   | U         |
| EPA 6010B                                | D             | Silver                                |          |           |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 0.01                                                                                                            | U         | 0.01   | U         |
| EPA 7470A                                | Т             | Mercury                               | 0.0002   | U         | 0.0002 | U           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                 |           |        |           |
| EPA 7470A                                | D             | Mercury                               |          |           |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 0.0002                                                                                                          | U         | 0.0002 | U         |
| EPA 9056                                 | Т             | Chloride                              | ე        | U.I       |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                 | -         | 0.0002 | -         |
| FPA 9056                                 | т             | Nitrate as N                          | <u>۲</u> | 11        |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                 |           |        |           |
|                                          | т<br>Т        | Culfata                               | 0.5      | U         |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                 | · · · · · |        |           |
| EPA 9050                                 | -             | Sunate                                | 4.8      |           | -      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                 |           |        |           |
| non-NELAC 3.3.13                         |               | 2-Butanone                            | 5        | U         | 5      | U           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           | ·      |           |
| non-NELAC 3.3.13                         | Т             | 4-Methyl-2-pentanone                  | 1        | U         | 1      | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
| non-NELAC 3.3.13                         | Т             | Methyl Tertbutyl Ether                | 1        | U         | 1      | U           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |                                                                                                                 |           |        |           |
| SM 2320B                                 | T ·           | Total Alkalinity. as CaCO3            | 5.6      |           |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                 |           |        |           |
| SM 2540 C                                | Т             | Total Dissolved Solids                | 13       | .1        |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                 |           |        |           |
| SM 4500 CN CRE                           | т             | Cvanida Total                         | 0.04     | J         |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                 |           |        |           |
| CINI 4000 CIN-CAE                        | 1<br>         | Oyanide, Total                        | 0.01     | 0         |        |             | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                                                                                                                 |           |        |           |
| SIVI 32200                               | 1             | Chemical Oxygen Demand                | 11       | U         |        |             | f .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1         | 1                                                                                                               | 1         |        | 1         |

Prepared by:BJS Date:4/12/10 Checked by:BBL Date:4/12/10

|                  |                    |                           | MW      | -101A           |
|------------------|--------------------|---------------------------|---------|-----------------|
|                  |                    |                           | 3/3/    | 2010            |
|                  |                    |                           | MW      | -101A           |
| Amahuaia         | Tue etiene         | Demons Maria              | Decult  | -S<br>Outlifier |
|                  | Fraction           | Param Name                | Result  | Quaimer         |
|                  |                    | 1,1,1,2-Tetrachioroethane |         |                 |
|                  | T                  | 1,1,1-Thchloroethane      |         |                 |
|                  | T                  | 1,1,2,2-Tetrachioroethane |         |                 |
|                  |                    | 1,1,2-Thchloroethane      |         |                 |
| EPA 0200B        |                    | 1,1-Dichloroethane        |         |                 |
| EPA 8260B        | -                  | 1,1-Dichloroethene        |         |                 |
| EPA 8260B        | 1                  | 1,2,3-1 richlorobenzene   |         | · ·             |
| EPA 8260B        | 1                  | 1,2,4- I richlorobenzene  |         |                 |
| EPA 8260B        | <u> </u>           | 1,2-Dibromoethane         |         |                 |
| EPA 8260B        | T                  | 1,2-Dichlorobenzene       |         |                 |
| EPA 8260B        | Т                  | 1,2-Dichloroethane        |         |                 |
| EPA 8260B        | T                  | 1,2-Dichloropropane       |         |                 |
| EPA 8260B        | T                  | 1,3-Dichlorobenzene       |         |                 |
| EPA 8260B        | Т                  | 1,3-Dichloropropane       |         |                 |
| EPA 8260B        | Т                  | 1,4-Dichlorobenzene       |         |                 |
| EPA 8260B        | Т                  | Acetone                   |         |                 |
| EPA 8260B        | Т                  | Benzene                   |         |                 |
| EPA 8260B        | Т                  | Bromodichloromethane      |         |                 |
| EPA 8260B        | Т                  | Bromoform                 |         |                 |
| EPA 8260B        | Т                  | Bromomethane              |         |                 |
| EPA 8260B        | ι.<br>Τ            | Carbon tetrachloride      |         |                 |
| EPA 8260B        | T                  | Chlorobenzene             |         |                 |
| EPA 8260B        | T                  | Chlorodibromomethane      |         |                 |
| EPA 8260B        | T                  | Chloroform                | ·       |                 |
| EDA 9260D        | T                  | Cis 1.2 Disblaraathana    |         |                 |
|                  | <br>               | cis-1,2-Dichloropropono   |         |                 |
|                  | <br>               | CIS-1,3-DICITIOTOPTOPETIE |         |                 |
| EPA 8260B        | -                  | Etnyl benzene             |         |                 |
| EPA 8260B        |                    | Methylene chloride        |         |                 |
| EPA 8260B        | 1                  | Naphthalene               |         |                 |
| EPA 8260B        | T                  | Styrene                   |         |                 |
| EPA 8260B        | Т                  | Tetrachloroethene         |         |                 |
| EPA 8260B        | Т                  | Toluene                   |         |                 |
| EPA 8260B        | T                  | trans-1,2-Dichloroethene  |         |                 |
| EPA 8260B        | T                  | trans-1,3-Dichloropropene |         |                 |
| EPA 8260B        | Т                  | Trichloroethene           |         |                 |
| EPA 8260B        | Т                  | Vinyl chloride            |         |                 |
| EPA 8260B        | Т                  | Xylenes, Total            |         |                 |
| EPA 6010B        | Т                  | Arsenic                   | 0.005   | U               |
| EPA 6010B        | Т                  | Barium                    |         |                 |
| EPA 6010B        | Т                  | Cadmium                   |         |                 |
| EPA 6010B        | Т                  | Calcium                   |         |                 |
| EPA 6010B        | T                  | Chromium                  |         |                 |
| EPA 6010B        | T                  | Copper                    |         |                 |
| EPA 6010B        | T                  | Iron                      |         |                 |
|                  | T                  | Lood                      |         |                 |
|                  | <br>               | Manganaga                 |         |                 |
|                  | <br>  <del></del>  |                           |         |                 |
|                  |                    | Selenium                  |         | N               |
| EPA DUTUB        | <br>               |                           | · · · · |                 |
| EPA 6010B        | 1 · ·              | Sodium                    |         |                 |
| EPA 6010B        | 1                  | I nallium                 |         |                 |
| EPA 6010B        |                    | Zinc                      |         |                 |
| EPA 6010B        | D                  | Arsenic                   |         |                 |
| EPA 6010B        | D                  | Barium                    |         |                 |
| EPA 6010B        | D                  | Cadmium                   |         |                 |
| EPA 6010B        | D                  | Chromium                  |         |                 |
| EPA 6010B        | D                  | Lead                      |         |                 |
| EPA 6010B        | D                  | Selenium                  |         |                 |
| EPA 6010B        | D                  | Silver                    |         |                 |
| EPA 7470A        | Т                  | Mercury                   |         |                 |
| EPA 7470A        | D                  | Mercury                   |         |                 |
| EPA 9056         | Т                  | Chloride                  |         |                 |
| EPA 9056         | Т                  | Nitrate as N              |         |                 |
| EPA 9056         | T                  | Sulfate                   |         |                 |
| non-NELAC 3 3 13 | T                  | 2-Butanone                |         |                 |
| non-NELAC 3 3 13 | і.<br>Т            | 4-Methyl_2-pentanone      |         |                 |
| non-NELAC 2.2.13 | т                  | Methyl Terthutyl Ethor    |         |                 |
| SM 23200         | <u>т</u>           | Total Alkalinity on CoCC2 |         |                 |
| SM 2540 C        | <br>               | Total Dissolved Calida    |         |                 |
| SM 4500 CN 005   | <br>  <del> </del> | Cuenido Totol             |         |                 |
| SIVI 4500 CN-C&E |                    | Cyanide, Lotal            |         |                 |
| SIVI 5220C       |                    | Cnemical Oxygen Demand    |         |                 |

3Yankee – Rowe, MA Validation Summary – March 2010 Groundwater and Surface Water MACTEC Project No. 3617087152

#### Data Validation Summary Yankee Nuclear Power Station Rowe, Massachusetts SDG: 3Y-YR-101

#### Introduction:

Five groundwater samples, eight surface water samples, and two trip blanks were collected on March 2 and 3, 2010, at the Yankee Nuclear Power Station, located in Rowe, Massachusetts. The samples were analyzed for one or more of the following parameters: volatile organic compounds (VOC), total metals, dissolved metals, and wet chemistry parameters (cyanide, chemical oxygen demand [COD], nitrate, chloride, sulfate, total dissolved solids [TDS], and alkalinity). Sample analyses for all parameters were performed by Northeast Laboratory Services (NEL), located in Waterville, ME.

A chemist review was performed on all samples and analyses using information supplied by the laboratory. The data package was validated using Region I EPA-New England Data Validation Functional Guidelines for Evaluating Environmental Analyses (USEPA, 1996) and the Yankee Nuclear Power Station Groundwater Monitoring Program, Document RP-05, Revision 3 (June 16, 2009).

The following samples collected during March 2010 are included in the data evaluation:

| Field Sample ID | NEL ID  | Sample Date | Comment                                                                       |
|-----------------|---------|-------------|-------------------------------------------------------------------------------|
| CFW-6           | AM01012 | 3/2/10      | VOC, total metals*, cyanide, COD, nitrate, chloride, sulfate, TDS, alkalinity |
| SW-4            | AM01013 | 3/2/10      | VOC, total metals*, cyanide, COD, nitrate, chloride, sulfate, TDS, alkalinity |
| SW-5            | AM01014 | 3/2/10      | VOC, total metals*, cyanide, COD, nitrate, chloride, sulfate, TDS, alkalinity |
| CFW-5           | AM01015 | 3/2/10      | VOC, total metals*, cyanide, COD, nitrate, chloride, sulfate, TDS, alkalinity |
| CFW-5DUP        | AM01016 | 3/2/10      | VOC, total metals*, cyanide, COD, nitrate, chloride, sulfate, TDS, alkalinity |
| TB-005          | AM01019 | 3/2/10      | VOC                                                                           |
| CFW-1           | AM01105 | 3/3/10      | VOC, total metals*, cyanide, COD, nitrate, chloride, sulfate, TDS, alkalinity |
| SW-1            | AM01106 | 3/3/10      | VOC, total metals*, cyanide, COD, nitrate, chloride, sulfate, TDS, alkalinity |
| SW-2            | AM01107 | 3/3/10      | VOC, total metals*, cyanide, COD, nitrate, chloride, sulfate, TDS, alkalinity |
| SW-3            | AM01108 | 3/3/10      | VOC, total metals*, cyanide, COD, nitrate, chloride, sulfate, TDS, alkalinity |
| SP-1            | AM01109 | 3/3/10      | VOC, RCRA 8 total metals plus thallium                                        |
| TB-006          | AM01110 | 3/3/10      | VOC                                                                           |
| SW-408          | AM01111 | 3/3/10      | RCRA 8 dissolved metals                                                       |
| SW-011          | AM01112 | 3/3/10      | RCRA 8 dissolved metals                                                       |
| MW-101A         | AM01113 | 3/3/10      | Arsenic                                                                       |

\* Metals include - RCRA 8 (arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver) + copper, iron, manganese, zinc, calcium, sodium

Data were evaluated for the following parameters:

- \* Collection and Preservation
- \* Holding Times
- \* Data Completeness
- \* Surrogate Recoveries
- \* Blank Contamination Duplicates
  Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Matrix Spike/Matrix Spike Duplicates (MS/MSD)
- \* Miscellaneous

\* - all criteria were met for this parameter

With the exception of the following items discussed below, results were determined to be usable as reported by the laboratory.

3Yankee – Rowe, MA Validation Summary – March 2010 Groundwater and Surface Water MACTEC Project No. 3617087152

Duplicates

TDS – The relative percent difference between sample SW-3 and its laboratory duplicate was greater than the laboratory QC limit of 20 for TDS (47). TDS results in associated samples CFW-6, SW-4, SW-5, CFW-5, CFW-5DUP, CFW-1, SW-1, SW-2, and SW-3 were qualified as estimated (J/UJ).

#### Laboratory Control Samples

Sulfate – The LCSD associated with a subset of samples had a percent recovery above the laboratory upper QC limit of 110 for sulfate (117), indicating potential high bias. Sulfate detections in samples CFW-6, SW-4, and SW-5 were qualified as estimated (J).

#### Matrix Spike/Matrix Spike Duplicate

**VOCs** – The MS associated with sample CFW-5 and its field duplicate CFW-5DUP had a percent recovery below the lower laboratory QC limit of 79% for 1,2,4-trichlorobenzene (78), indicating potential low bias. The relative percent difference between the MS and MSD was greater than the laboratory QC limit of 20 for naphthalene (22). Naphthalene and 1,2,4-trichlorobenzene were reported as non-detect (U) in samples CFW-5 and CFW-5DUP and were qualified as estimated (UJ).

Metals – The MS/MSD associated with sample CFW-5 and its field duplicate CFW-5DUP had percent recoveries above the upper laboratory QC limit of 125% for selenium (133/132), indicating potential high bias. Selenium detections samples CFW-5 and CFW-5DUP were qualified as estimated (J).

Chloride – The matrix spike/matrix spike duplicate associated with sample CFW-5 and its field duplicate CFW-5DUP had percent recoveries below the laboratory lower QC limit of 90 for chloride (88/88), indicating potential low bias. Chloride results in associated samples CFW-6, SW-4, SW-5, CFW-5, CFW-5DUP, CFW-1, SW-1, SW-2, and SW-3 were qualified as estimated (J/UJ).

#### References:

U.S. Environmental Protection Agency (USEPA), 1996. "Region I, EPA-New England Data Validation Functional Guidelines for Evaluating Environmental Analyses, Parts I and II," Quality Assurance Unit Staff; Office of Environmental Measurement and Evaluation; December, 1996.

Yankee Nuclear Power Station, 2007. "YNPS Groundwater Monitoring Program." ISFSI Radiation Protection, RP-05: Revision 3, June 16, 2009.

Data Validator: Bradley B. LaForest, NRCC-EAC

Bradly B.

April 2, 2010

**APPENDIX B-3** 

VALIDATION CHECKLISTS - MARCH 2010

| R | P-( | )5  |
|---|-----|-----|
| R | ev. | . 3 |

ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

| Sample ID      | Analysis Date | Sample<br>Designator<br>(Note 1) | All Scheduled<br>Analyses<br>Performed? | Sample<br>Processing<br>Comments? | Units Correct? | Assessment<br>Criteria (Note<br>2) (Note 3) |
|----------------|---------------|----------------------------------|-----------------------------------------|-----------------------------------|----------------|---------------------------------------------|
| MW-102D        | 03/24/2010    | FS                               | Yes                                     | ОК                                | Yes            | See attached<br>Checklist                   |
| MW-104A        | 03/24/2010    | FS                               | Yes                                     | OK                                | Yes            | See attached<br>Checklist                   |
| MW-<br>104ADUP | 03/24/2010    | DU (Field)                       | Yes                                     | See (1) below                     | Yes            | See attached<br>Checklist                   |
| MW-105B        | 03/24/2010    | FS                               | Yes                                     | OK                                | Yes            | See attached<br>Checklist                   |
| MW-106A        | 03/24/2010    | FS                               | Yes                                     | OK                                | Yes            | See attached<br>Checklist                   |
| MW-107C        | 03/24/2010    | FS                               | Yes                                     | OK                                | Yes            | See attached<br>Checklist                   |
| MW-107D        | 03/24/2010    | FS                               | Yes                                     | OK                                | Yes            | See attached<br>Checklist                   |
| MW-107E        | 03/24/2010    | FS                               | Yes                                     | OK                                | Yes            | See attached<br>Checklist                   |
| MW-107F        | 03/24/2010    | FS                               | Yes                                     | OK                                | Yes            | See attached<br>Checklist                   |

#### **Gamma Spec**

### NOTE

- 1.0 FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
- 2.0 Reported MDC  $\leq$  Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
- 3.0 Requirements for SK, DU, and QC per section D.
- I. All Requested analyses performed on all samples? X Yes No
- II. Resolution of Sample Processing/Missing Analytes comments:

(1) Sample incorrectly logged in and reported by lab as MW-104DUP; manually corrected sample ID to MW-104ADUP on hardcopy result and EDD as needed.

No other processing issues or missing analytes.

III. Resolution of Sample Processing/Missing Analytes comments:

(1) Sample incorrectly logged in and reported by lab as MW-104DUP; manually corrected sample ID to MW-104ADUP on hardcopy result and EDD as needed.

Page 1 of 2

ASSESSMENT OF DATA QUALITY

No other processing issues or missing analytes.

- IV. Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):See attached Checklist for details; no sample qualifications required.
- V. Data verification calculation sheets are attached(at least one calculation per batch) NA Reviewer Multiple for Julie Ricards Date: April 7, 2010

Γ

| R | P-( | )5 |
|---|-----|----|
| R | ev  | 3  |

### ATTACHMENT C ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

| Sample ID  | Analysis Date | Sample<br>Designator<br>(Note 1) | All Scheduled<br>Analyses<br>Performed? | Sample<br>Processing<br>Comments? | Units Correct? | Assessment<br>Criteria (Note<br>2) (Note 3) |
|------------|---------------|----------------------------------|-----------------------------------------|-----------------------------------|----------------|---------------------------------------------|
| Monroe Dam | 03/24/2010    | FS                               | Yes                                     | OK                                | Yes            | See attached<br>Checklist                   |
| SP-1       | 03/24/2010    | FS                               | Yes                                     | OK                                | Yes            | See attached<br>Checklist                   |
| SW-011     | 03/24/2010    | FS                               | Yes                                     | OK                                | Yes            | See attached<br>Checklist                   |
| SW-408     | 03/24/2010    | FS                               | Yes                                     | OK                                | Yes            | See attached<br>Checklist                   |
| EB-003     | 03/24/2010    | BL (Field)                       | Yes                                     | OK                                | Yes            | See attached<br>Checklist                   |
|            |               | · ·                              |                                         |                                   |                |                                             |
|            |               |                                  |                                         |                                   |                |                                             |
|            |               |                                  |                                         |                                   |                |                                             |
|            |               |                                  |                                         |                                   |                |                                             |

|      | NOTE                                                                                                                                    |
|------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 1.0  | FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike                                                     |
| 2.0  | Reported MDC $\leq$ Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.                                         |
| 3.0  | Requirements for SK, DU, and QC per section D.                                                                                          |
| I.   | All Requested analyses performed on all samples? X_YesNo                                                                                |
| II.  | Resolution of Sample Processing/Missing Analytes comments:                                                                              |
|      | No processing issues or missing analytes.                                                                                               |
| III. | Resolution of Sample Processing/Missing Analytes comments:                                                                              |
|      | No processing issues or missing analytes.                                                                                               |
| IV.  | Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):                                                        |
|      | See attached Checklist for details; no sample qualifications required.                                                                  |
| V.   | Data verification calculation sheets are attached(at least one calculation per batch) NA<br>Reviewer/////////////////////////////////// |

## Gamma Spec

Page 1 of 1

Γ

| RP-0 | 5 |
|------|---|
| Rev. | 3 |

٦

## ATTACHMENT C ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

|              |               |            | · · · · · · · · · · · · · · · · · · · | ,          |          |                |
|--------------|---------------|------------|---------------------------------------|------------|----------|----------------|
| Sample ID    | Analysis Date | Sample     | All Scheduled                         | Sample     | Units    | Assessment     |
|              |               | Designator | Analyses                              | Processing | Correct? | Criteria (Note |
|              |               | (Note 1)   | Performed?                            | Comments?  |          | 2) (Note 3)    |
| QC1202063075 | 03/24/2010    | DU         | Yes                                   | OK         | Yes      | See attached   |
|              |               |            |                                       |            |          | Checklist      |
| QC1202063077 | 03/24/2010    | QC (LCS)   | Yes                                   | OK         | Yes      | See attached   |
|              |               |            |                                       |            |          | Checklist      |
| QC1202063074 | 03/24/2010    | BL         | Yes                                   | OK         | Yes      | See attached   |
|              |               |            |                                       |            |          | Checklist      |
|              |               |            |                                       |            |          | · ·            |
|              |               |            |                                       |            |          |                |
|              |               |            |                                       |            |          |                |
|              |               |            |                                       | · · ·      |          |                |
|              |               |            |                                       |            |          | -              |
|              |               |            |                                       |            |          |                |
|              |               |            |                                       |            |          |                |

## Gamma Spec

| ж.<br>Т | NOTE                                                                                                                                                 |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0     | FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike                                                                  |
| 2.0     | Reported MDC $\leq$ Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.                                                      |
| 3.0     | Requirements for SK, DU, and QC per section D.                                                                                                       |
| I.      | All Requested analyses performed on all samples? X Yes No                                                                                            |
| II.     | Resolution of Sample Processing/Missing Analytes comments:                                                                                           |
|         | No processing issues or missing analytes.                                                                                                            |
| III.    | Resolution of Sample Processing/Missing Analytes comments:                                                                                           |
|         | No processing issues or missing analytes.                                                                                                            |
| IV.     | Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):                                                                     |
|         | See attached Checklist for details; no sample qualifications required.                                                                               |
| V.      | Data verification calculation sheets are attached (at least one calculation per batch) NA<br>Reviewer $\frac{1}{10000000000000000000000000000000000$ |

## Page 1 of 1

| R | P-( | )5 |
|---|-----|----|
| D | 017 | 2  |

ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

| Sample ID      | Analysis Date | Sample<br>Designator<br>(Note 1) | All Scheduled<br>Analyses<br>Performed? | Sample<br>Processing<br>Comments? | Units Correct? | Assessment<br>Criteria (Note<br>2) (Note 3) |
|----------------|---------------|----------------------------------|-----------------------------------------|-----------------------------------|----------------|---------------------------------------------|
| MW-102D        | 03/15/2010    | FS                               | Yes                                     | OK                                | Yes            | See attached<br>Checklist                   |
| MW-104A        | 03/15/2010    | FS                               | Yes                                     | OK                                | Yes            | See attached<br>Checklist                   |
| MW-<br>104ADUP | 03/15/2010    | DU (Field)                       | Yes                                     | See (1) below                     | Yes            | See attached<br>Checklist                   |
| MW-105B        | 03/15/2010    | FS                               | Yes                                     | OK                                | Yes            | See attached<br>Checklist                   |
| MW-106A        | 03/15/2010    | FS                               | Yes                                     | OK                                | Yes            | See attached<br>Checklist                   |
| MW-107C        | 03/15/2010    | FS                               | Yes                                     | OK                                | Yes            | See attached<br>Checklist                   |
| MW-107D        | 03/22/2010    | FS                               | Yes                                     | See (2) below                     | Yes            | See attached<br>Checklist                   |
| MW-107E        | 03/15/2010    | FS                               | Yes                                     | OK                                | Yes            | See attached<br>Checklist                   |
| MW-107F        | 03/15/2010    | FS                               | Yes                                     | OK                                | Yes            | See attached<br>Checklist                   |

### Strontium-90

### NOTE

- 1.0 FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
- 2.0 Reported MDC  $\leq$  Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
- 3.0 Requirements for SK, DU, and QC per section D.
- I. All Requested analyses performed on all samples? X Yes No
- II. Resolution of Sample Processing/Missing Analytes comments:

(1) Sample incorrectly logged in and reported by lab as MW-104DUP; manually corrected sample ID to MW-104ADUP on hardcopy result and EDD as needed.

(2) Sample recounted to verify results; no problems noted.

No processing issues or missing analytes.

# ASSESSMENT OF DATA QUALITY

III. Resolution of Sample Processing/Missing Analytes comments:

(1) Sample incorrectly logged in and reported by lab as MW-104DUP; manually corrected sample ID to MW-104ADUP on hardcopy result and EDD as needed.

(2) Sample recounted to verify results; no problems noted.

No processing issues or missing analytes.

- IV. Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):See attached Checklist for details; no sample qualifications required.
- V. Data verification calculation sheets are attached(at least one calculation per batch) NA Reviewer Mark For Jahe Ricard Date: April 7, 2010

| RP-0 | 5 |
|------|---|
| Rev. | 3 |

ASSESSMENT OF DATA QUALITY

Strontium-90

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

| Sample ID  | Analysis Date                         | Sample<br>Designator<br>(Note 1) | All Scheduled<br>Analyses<br>Performed? | Sample<br>Processing<br>Comments? | Units Correct? | Assessment<br>Criteria (Note<br>2) (Note 3) |
|------------|---------------------------------------|----------------------------------|-----------------------------------------|-----------------------------------|----------------|---------------------------------------------|
| Monroe Dam | 03/15/2010                            | FS                               | Yes                                     | OK                                | Yes            | See attached<br>Checklist                   |
| SP-1       | 03/15/2010                            | FS                               | Yes                                     | OK                                | Yes            | See attached<br>Checklist                   |
| SW-011     | 03/15/2010                            | FS                               | Yes                                     | OK                                | Yes            | See attached<br>Checklist                   |
| SW-408     | 03/15/2010                            | FS                               | Yes                                     | ОҚ                                | Yes            | See attached<br>Checklist                   |
| EB-003     | 03/15/2010                            | BL (Field)                       | Yes                                     | OK                                | Yes            | See attached<br>Checklist                   |
|            |                                       |                                  |                                         |                                   |                |                                             |
|            |                                       |                                  |                                         |                                   |                |                                             |
|            | · · · · · · · · · · · · · · · · · · · | · · ·                            |                                         |                                   |                |                                             |
|            |                                       |                                  |                                         |                                   |                |                                             |

### NOTE

- 1.0 FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
- 2.0 Reported MDC  $\leq$  Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
- 3.0 Requirements for SK, DU, and QC per section D.
- I. All Requested analyses performed on all samples? X\_Yes \_\_\_\_No
- II. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes.
- III. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes.
- IV. Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):See attached Checklist for details; no sample qualifications required.
- V. Data verification calculation sheets are attached (at least one calculation per batch) NA Reviewer MM for Julie Ricard, Date: April 7, 2010

RP-05 Rev. 3

## ATTACHMENT C ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

| Sample ID    | Analysis Date | Sample<br>Designator<br>(Note 1) | All Scheduled<br>Analyses<br>Performed? | Sample<br>Processing<br>Comments? | Units<br>Correct? | Assessment<br>Criteria (Note<br>2) (Note 3) |
|--------------|---------------|----------------------------------|-----------------------------------------|-----------------------------------|-------------------|---------------------------------------------|
| QC1202065011 | 03/15/2010    | DU                               | Yes                                     | OK                                | Yes               | See attached<br>Checklist                   |
| QC1202065013 | 03/15/2010    | QC (LCS)                         | Yes                                     | OK                                | Yes               | See attached<br>Checklist                   |
| QC1202065010 | 03/15/2010    | BL                               | Yes                                     | OK                                | Yes               | See attached<br>Checklist                   |
| QC1202065012 | 03/15/2010    | SK                               | Yes                                     | OK                                | Yes               | See attached<br>Checklist                   |
|              |               |                                  |                                         |                                   |                   |                                             |
|              |               |                                  |                                         |                                   |                   |                                             |
|              |               |                                  |                                         |                                   |                   |                                             |
|              |               |                                  |                                         |                                   |                   |                                             |
|              |               |                                  |                                         |                                   |                   |                                             |

#### Strontium-90

### NOTE

- 1.0 FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
- 2.0 Reported MDC  $\leq$  Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
- 3.0 Requirements for SK, DU, and QC per section D.
- I. All Requested analyses performed on all samples? X\_Yes No
- II. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes.
- III. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes.
- IV. Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):See attached Checklist for details; no sample qualifications required.
- V. Data verification calculation sheets are attached(at least one calculation per batch) NA Reviewer May for Julie Ricards Date: April 7, 2010

### RP-05 Rev. 3

### ATTACHMENT C ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

|           |                                       |                                       | P             |               |                |                |
|-----------|---------------------------------------|---------------------------------------|---------------|---------------|----------------|----------------|
| Sample ID | Analysis Date                         | Sample                                | All Scheduled | Sample        | Units Correct? | Assessment     |
| -         | -                                     | Designator                            | Analyses      | Processing    |                | Criteria (Note |
|           |                                       | (Note 1)                              | Performed?    | Comments?     |                | 2) (Note 3)    |
|           |                                       | (1.000 1)                             |               |               |                | -) ()          |
| MW-102D   | 03/25/2010                            | FS                                    | Yes           | See (1) below | Yes            | See attached   |
|           |                                       |                                       |               |               |                | Checklist      |
|           | 00/05/0010                            |                                       | **            |               |                | 0              |
| MW-104A   | 03/25/2010                            | FS                                    | Yes           | See (1) below | Yes            | See attached   |
|           |                                       |                                       |               |               |                | Checklist      |
| MW-       | 03/25/2010                            | DU (Field)                            | Ves           | See (1) and   | Ves            | See attached   |
|           | 05/25/2010                            |                                       | 100           | (2) below     | 105            | Checklist      |
| 104ADUr   |                                       |                                       |               | (2) below     | · · · · · ·    | CHOCKHSt       |
| MW-105B   | 03/25/2010                            | FS                                    | Yes           | See (1) below | Yes            | See attached   |
|           |                                       |                                       |               |               |                | Checklist      |
|           |                                       |                                       |               |               |                |                |
| MW-106A   | 03/25/2010                            | FS                                    | Yes           | See (1) below | Yes            | See attached   |
|           | · · · · · · · · · · · · · · · · · · · |                                       |               |               |                | Checklist      |
| MW 107C   | 02/25/2010                            | EC                                    | Var           | See (1) below | Vac            | Saa attachad   |
| WW-10/C   | 03/23/2010                            | r5                                    | res           | See (1) below | res            | See attached   |
|           |                                       |                                       |               |               |                | Checklist      |
| MW-107D   | 03/25/2010                            | FS                                    | Yes           | See (1) below | Yes            | See attached   |
|           |                                       |                                       |               |               |                | Checklist      |
|           |                                       |                                       |               |               |                |                |
| MW-107E   | 03/25/2010                            | FS                                    | Yes           | See (1) below | Yes            | See attached   |
|           |                                       |                                       |               |               |                | Checklist      |
|           |                                       |                                       |               |               |                |                |
| MW-107F   | 03/25/2010                            | FS                                    | Yes           | See (1) below | Yes            | See attached   |
|           |                                       |                                       |               |               |                | Checklist      |
|           |                                       | · · · · · · · · · · · · · · · · · · · |               |               | ·              | L              |

#### Tritium

### NOTE

- 1.0 FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
- 2.0 Reported MDC  $\leq$  Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
- 3.0 Requirements for SK, DU, and QC per section D.
- I. All Requested analyses performed on all samples? X\_Yes No
- II. Resolution of Sample Processing/Missing Analytes comments:

(1) Sample recounted to verify results; no problems noted.

(2) Sample incorrectly logged in and reported by lab as MW-104DUP; manually corrected sample ID to MW-104ADUP on hardcopy result and EDD as needed.

No processing issues or missing analytes.

## ATTACHMENT C ASSESSMENT OF DATA QUALITY

RP-05 Rev. 3

III. Resolution of Sample Processing/Missing Analytes comments:

(1) Sample recounted to verify results; no problems noted.

(2) Sample incorrectly logged in and reported by lab as MW-104DUP; manually corrected sample ID to MW-104ADUP on hardcopy result and EDD as needed.

No processing issues or missing analytes.

IV. Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):

See attached Checklist for details; no sample qualifications required.

V. Data verification calculation sheets are attached(at least one calculation per batch) NA Reviewer Mark Fir Julie Ricard Date: April 7, 2010

RP-05 Rev. 3

# ATTACHMENT C ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

| Sample ID  | Analysis Date | Sample     | All Scheduled | Sample        | Units Correct?                        | Assessment     |
|------------|---------------|------------|---------------|---------------|---------------------------------------|----------------|
| -          |               | Designator | Analyses      | Processing    |                                       | Criteria (Note |
|            |               | (Note 1)   | Performed?    | Comments?     |                                       | 2) (Note 3)    |
|            |               |            | I enomed:     | Comments:     |                                       | 2) (1000 3)    |
| Monroe Dam | 03/23/2010    | FS         | Yes           | OK            | Yes                                   | See attached   |
|            |               |            |               |               |                                       | Checklist      |
|            |               |            |               |               |                                       | CHOCKHSt       |
| SP-1       | 03/25/2010    | FS         | Yes           | See (1) below | Yes                                   | See attached   |
|            |               |            |               |               |                                       | Checklist      |
|            |               |            |               |               |                                       | Checkhist      |
| SW-011     | 03/25/2010    | FS         | Yes           | OK            | Yes                                   | See attached   |
|            |               |            |               |               |                                       | Checklist      |
|            |               |            |               |               |                                       | Checkhist      |
| SW-408     | 03/25/2010    | FS         | Yes           | OK            | Yes                                   | See attached   |
|            |               | 1          |               |               |                                       | Checklist      |
|            |               |            |               |               |                                       | Checklist      |
| EB-003     | 03/25/2010    | BL (Field) | Yes           | OK            | Yes                                   | See attached   |
|            |               |            |               |               |                                       | Checklist      |
|            |               |            |               |               |                                       | Checkhot       |
|            |               |            |               |               |                                       |                |
|            |               |            |               |               | · · · · · · · · · · · · · · · · · · · |                |
|            |               |            | 1             |               |                                       |                |
|            |               |            |               |               |                                       |                |
|            |               |            |               |               |                                       |                |
|            |               |            |               |               |                                       |                |
|            |               |            |               |               |                                       |                |
|            | L             | 1          | 1             | L             | 1                                     |                |

|      | NOTE                                                                                            |  |  |  |  |  |  |  |
|------|-------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 1.0  | FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike             |  |  |  |  |  |  |  |
| 2.0  | Reported MDC $\leq$ Required MDC for FS, DU, BL. Yield for all samples evaluated when reported. |  |  |  |  |  |  |  |
| 3.0  | Requirements for SK, DU, and QC per section D.                                                  |  |  |  |  |  |  |  |
| I.   | All Requested analyses performed on all samples? X Yes No                                       |  |  |  |  |  |  |  |
| II.  | Resolution of Sample Processing/Missing Analytes comments:                                      |  |  |  |  |  |  |  |
|      | (1) Sample recounted to verify results; no problems noted.                                      |  |  |  |  |  |  |  |
|      | No processing issues or missing analytes.                                                       |  |  |  |  |  |  |  |
| III. | . Resolution of Sample Processing/Missing Analytes comments:                                    |  |  |  |  |  |  |  |
|      | (1) Sample recounted to verify results; no problems noted.                                      |  |  |  |  |  |  |  |
|      | No processing issues or missing analytes.                                                       |  |  |  |  |  |  |  |
| IV.  | Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):                |  |  |  |  |  |  |  |
|      | See attached Checklist for details; no sample qualifications required.<br>Page 1 of 2           |  |  |  |  |  |  |  |

## Tritium

RP-05 Rev. 3

# ATTACHMENT C ASSESSMENT OF DATA QUALITY

V. Data verification calculation sheets are attached(at least one calculation per batch) NA Reviewer Mark Thickicand i Date: April 7, 2010

Г

**RP-05** Rev. 3

## ATTACHMENT C ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

| Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analysis Date                         | Sample        | All Scheduled | Sample     | Units    | Assessment                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------|---------------|------------|----------|---------------------------------------|
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | Designator    | Analyses      | Processing | Correct? | Criteria (Note                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | (Note 1)      | Performed?    | Comments?  |          | 2) (Note 3)                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |               | r enformed.   | Comments.  |          | 2) (1000 5)                           |
| OC1202064443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 03/25/2010                            | DU            | Yes           | OK         | Yes      | See attached                          |
| Q o the official offi |                                       |               |               |            |          | Checklist                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |               |               |            |          | CHOCKIISt                             |
| OC1202064445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 03/25/2010                            | OC (LCS)      | Yes           | OK         | Yes      | See attached                          |
| Q O I III O III I III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | <b>X</b> = () |               |            |          | Checklist                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |               |               |            |          | Checklist                             |
| OC1202064442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 03/25/2010                            | BL            | Yes           | OK         | Yes      | See attached                          |
| 201202001112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 03/20/2010                            | 22            |               |            |          | Checklist                             |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |               |               |            |          | Checkhot                              |
| OC1202064444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 03/25/2010                            | SK            | Yes           | OK         | Yes      | See attached                          |
| Q01202001111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 03/23/2010                            |               | 105           | 011        |          | Checklist                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |               |               |            |          | CHOCKHSt                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |               |               |            |          |                                       |
| н.<br>- С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |               |               |            |          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |               |               |            |          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |               |               |            |          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |               |               |            |          |                                       |
| ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |               |               |            |          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |               |               |            |          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |               |               |            |          | · · · · · · · · · · · · · · · · · · · |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |               |               |            |          |                                       |
| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L                                     | 1             | L             |            |          | I                                     |

|      | NOTE                                                                                            |  |  |  |  |  |  |
|------|-------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1.0  | FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike             |  |  |  |  |  |  |
| 2.0  | Reported MDC $\leq$ Required MDC for FS, DU, BL. Yield for all samples evaluated when reported. |  |  |  |  |  |  |
| 3.0  | Requirements for SK, DU, and QC per section D.                                                  |  |  |  |  |  |  |
| I.   | All Requested analyses performed on all samples? X Yes No                                       |  |  |  |  |  |  |
| II.  | Resolution of Sample Processing/Missing Analytes comments:                                      |  |  |  |  |  |  |
|      | No processing issues or missing analytes.                                                       |  |  |  |  |  |  |
| III. | Resolution of Sample Processing/Missing Analytes comments:                                      |  |  |  |  |  |  |
|      | No processing issues or missing analytes.                                                       |  |  |  |  |  |  |
| IV.  | Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):                |  |  |  |  |  |  |
|      | See attached Checklist for details; no sample qualifications required.                          |  |  |  |  |  |  |
| V.   | Data verification calculation sheets are attached (at least one calculation per batch) NA       |  |  |  |  |  |  |
|      | Reviewer May for Julie Ricard Date: April 7, 2010                                               |  |  |  |  |  |  |

## Tritium

| SFSI Radiat | on Protection                                                                                                   | RP-05<br>Rev. 3            |
|-------------|-----------------------------------------------------------------------------------------------------------------|----------------------------|
| R           | ATTACHMENT D<br>EVIEW OF CHAIN OF CUSTODY AND SAMPLE DOCUMEN                                                    | NTATION                    |
| Sa          | mpling Event Date(s) March 2010 Shipment I                                                                      | Date 3.4.10                |
| W           | ells Sampled in this Batch: MW-1820, MW-1840, MW-18315, MW-1                                                    | MW-107E SP-1 SW-01/ SW-02E |
| I.          | All samples identified on COC forms? X Yes No                                                                   | Monroe Dam, EB-003         |
| II.         | Samples obtained match those required by sampling plan?                                                         | Yes No                     |
| III.        | Verification of unbroken chain of custody for samples? X                                                        | esNo                       |
| IV.         | Samples received intact by laboratory? X Yes No                                                                 |                            |
| V.          | Sample flush volumes and flow parameters consistent with histo acceptable? <u>Yes</u> No                        | orical data and            |
| VI.         | Sample non-radiological parameters consistent with historical d                                                 | ata and acceptable?        |
| VII.        | All preservative and container requirements met? $\_$ Yes $\_$                                                  | No                         |
| VIII.       | Samples obtained match those required by sampling plan?                                                         | _YesNo                     |
| IX.         | Evaluation for accepting sample for any questions I – VIII answ<br>if resample will be done prior to shipment): | vered "NO" (indicate       |
|             | N /                                                                                                             |                            |
|             | A                                                                                                               | r                          |
|             |                                                                                                                 |                            |
|             | Reviewer Mit Date 3                                                                                             | 5-10                       |
|             | 4 coolers shipped to GEL                                                                                        |                            |

### RP-05 Rev. 3

## ATTACHMENT C ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

| Sample ID     | Analysis<br>Date | Sample<br>Designator<br>(Note 1) | All<br>Scheduled<br>Analyses<br>Performed? | Sample<br>Processing<br>Comments?                                          | Units<br>Correct? | Assessment Criteria<br>(Note 2) (Note 3) |
|---------------|------------------|----------------------------------|--------------------------------------------|----------------------------------------------------------------------------|-------------------|------------------------------------------|
| CFW-6         | 3/3/10           | FS                               | Yes                                        | О.К.                                                                       | Yes               | See attached checklist                   |
| SW-4          | 3/3/10           | FS                               | Yes                                        | 0.K.                                                                       | Yes               | See attached checklist                   |
| SW-5          | 3/3/10           | FS                               | Yes                                        | 0.K.                                                                       | Yes               | See attached checklist                   |
| CFW-5         | 3/3/10           | FS                               | Yes                                        | 0.K.                                                                       | Yes               | See attached checklist                   |
| CFW-5DUP      | 3/3/10           | DU (Field)                       | Yes                                        | 0.K.                                                                       | Yes               | See attached checklist                   |
| TB-005        | 3/3/10           | BL (Trip)                        | Yes                                        | O.K.                                                                       | Yes               | See attached checklist                   |
| CFW=1         | 3/4/10           | FS                               | Yes                                        | 0.K.                                                                       | Yes               | See attached checklist                   |
| SW-1          | 3/4/10           | FS                               | Yes                                        | 0.K.                                                                       | Yes               | See attached checklist                   |
| SW-2          | 3/4/10           | FS                               | Yes                                        | 0.K.                                                                       | Yes               | See attached checklist                   |
| SW-3          | 3/4/10           | FS                               | Yes                                        | 0,K,                                                                       | Yes               | See attached checklist                   |
| SP-1          | 3/4/10           | FS                               | Yes                                        | 0.K.                                                                       | Yes               | See attached checklist                   |
| TB-006        | 3/4/10           | BL (Trip)                        | Yes                                        | 0.K.                                                                       | Yes               | See attached checklist                   |
| Laboratory QC | 1                |                                  |                                            | <u>n a langen di kina kina ka</u> na kana kana kina kina kina kina kina ki |                   |                                          |
| LCSF0303      | 3/3/10           | QC                               | Yes                                        | O.K.                                                                       | Yes               | See attached checklist                   |
| VBLKF0303     | 3/3/10           | BL                               | Yes                                        | O.K.                                                                       | Yes               | See attached checklist                   |
| LCSF0304      | 3/4/10           | QC                               | Yes                                        | 0.K.                                                                       | Yes               | See attached checklist                   |
| VBLKF0304     | 3/4/10           | BL                               | Yes                                        | O.K.                                                                       | Yes               | See attached checklist                   |
| LCSF0305      | 3/5/10           | QC                               | Yes                                        | 0.K.                                                                       | Yes               | See attached checklist                   |
| VBLKF0305     | 3/5/10           | BL                               | Yes                                        | 0.K.                                                                       | Yes               | See attached checklist                   |
| AM01015.14MS  | 3/5/10           | SK.                              | Yes                                        | O.K.                                                                       | Yes               | See attached checklist                   |
| AM01015.15MSD | 3/5/10           | SK                               | Yes                                        | O.K.                                                                       | Yes               | See attached checklist                   |

## Volatile Organic Compounds (VOCs)

RP-05 Rev. 3

# ATTACHMENT C ASSESSMENT OF DATA QUALITY

|     | NOTE                                                                                            |
|-----|-------------------------------------------------------------------------------------------------|
| 1.0 | FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike             |
| 2.0 | Reported MDC $\leq$ Required MDC for FS, DU, BL. Yield for all samples evaluated when reported. |
| 3.0 | Requirements for SK, DU, and QC per section D.                                                  |
| 1.  | All Requested analyses performed on all samples? X_YesNo                                        |
| Π.  | Resolution of Sample Processing/Missing Analytes comments:                                      |
|     | No processing issues or missing analytes                                                        |
| Ш.  | Resolution of Sample Processing/Missing Analytes comments:                                      |
|     | No processing issues or missing analytes                                                        |
| īV. | Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):                |
|     | See attached checklist for details on sample qualifications                                     |
| V.  | Data verification calculation sheets are attached (at least one calculation per batch) NA       |
|     | Reviewer Date: March 30,2010                                                                    |
|     |                                                                                                 |

#### REGION I TIER II VALIDATION CHECKLIST Criteria and Qualifications: REGION I Organics Guideline (Draft 12/96) VOLATILE

Site: YANKEE ROWE

Project #: 3617087152/02.01

Box #: YR-101

Sample IDs: See attached tracking sheet or samples listed.

| CFW-6 | CFW-5 DUP   | SW-3          |                         |
|-------|-------------|---------------|-------------------------|
| SW-4  | CFW-1       | SP-1          |                         |
| SW-5  | SW-1        | TB-005        |                         |
| CFW-5 | <u>SW-2</u> | <u>TB-006</u> | antinental transmission |

This checklist is used to document Tier II validation. It can also be used to document Level III validation. During Level III validation, calculation and transcription checks are completed for instrument tuning, surrogates, target compounds, spike recoveries, calibration data, and internal standards as specified in the guideline. These checks are documented on attached validation notes.

| YES         | NO                   |                                                                                                                          |                                                                                                                                    |
|-------------|----------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| X           | D                    | Hold Times                                                                                                               | Attach list of samples which exceed hold times.<br>Indicate total hold time and qualifiers.                                        |
| Data (<br>X | completen<br>and rav | ess<br>Cover page, Forms I-VIII, DC-1, DC-2,<br>v data                                                                   | Comments on missing information (if any) and action taken.                                                                         |
| X<br>Chain  | Of Custor            | iginal shipping and receiving documents                                                                                  |                                                                                                                                    |
| X<br>prepa  | D<br>ration and      | All original lab records of sample<br>l analysis                                                                         |                                                                                                                                    |
| GC/M<br>D   | IS Instrum           | ent Performance Check<br>Form V present and complete for all<br>samples for each 12-hour period samples<br>were analyzed | Attach copy of Form V if criteria was not met.<br>Highlight criteria not met, list samples affected,<br>and list qualifiers added. |
| C           |                      | Appropriate number of significant figures reported (at least 2)                                                          | OK Per case narrative                                                                                                              |
|             | 0                    | Mass/Charge list (m/z) criteria met                                                                                      |                                                                                                                                    |
| GC/N        | IS Initial C         | alibration<br>Form VI present and complete for all                                                                       | Attach copy of Form VI if criteria was not met.                                                                                    |
|             |                      | %RSD less than or equal to 30%<br>RRF greater than or equal to 0.05                                                      | Highlight criteria not met, list samples affected,<br>and list qualifiers added.<br>OK - Per case narrative                        |
| GC/M        | IS Continu           | ung Calibration                                                                                                          |                                                                                                                                    |
|             | C                    | Form VII present and complete for all                                                                                    | Attach copy of Form VII if criteria was not met.                                                                                   |
|             |                      | %D less than or equal to 25% RRF greater than or equal to 0.05.                                                          | and list qualifiers added.<br>OK – Per case narrative                                                                              |
| Meth        | od Blanks            | Forme i & M propost and populate for all                                                                                 | Attach constraine N/fex all complex list all                                                                                       |
| Х           | LI                   | Form I & IV present and complete for all blanks                                                                          | contaminants, concentrations and action level.                                                                                     |
| Х           |                      | One analyzed per GC/MS system per                                                                                        | Attach conv of Form I for contaminated field or                                                                                    |
| Х           |                      | One analyzed per matrix/concentration                                                                                    | trip blanks. Circle all contaminants. Field QC<br>blanks will not be used to determine action                                      |
|             | Х                    | Contaminants                                                                                                             | levels for non-aqueous samples. Flag samples<br>EB (equipment blank), TB (trip blank), or BB                                       |
|             | <u>form</u>          | A cleaning blank was analyzed after any<br>high concentration sample (exceeding<br>calibration range)                    | (bottle blank) as indicated in the guideline.                                                                                      |

### REGION I TIER II VALIDATION CHECKLIST Criteria and Qualifications: REGION I Organics Guideline (Draft 12/96) VOLATILE

| Site: <u>YANKEE ROWE</u> Project #: <u>3617087152/02.01</u> Box #: <u>YR-101</u> |                         |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|----------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Trip/Eq                                                                          | uipment                 | Blanks                                                                                                             | Describe professional judgements and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                  | X                       | Contaminants                                                                                                       | desuara u abbuea:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Surroga<br>X                                                                     | nte/Syste               | m Monitoring Compounds Recovery<br>Form II present and complete for all<br>samples                                 | Attach copies of Form II (Part 2) for all non-<br>compliant %R. Circle outliers & indicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| X                                                                                |                         | Percent recovery criteria met                                                                                      | qualifier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Matrix \$                                                                        | 3pike/Ma<br>□<br>X<br>X | trix Spike Duplicate<br>Form I and III present and complete<br>Percent recovery criteria met<br>RPD criteria met   | Attach copy of Form III for all non-compliant %<br>and RPD. Circle all non-compliances and<br>indicate qualifiers. The MS associated with<br>sample CFW-5 and its field duplicate CFW-<br>5DUP had a percent recovery below the lower<br>laboratory QC limit of 79% for 1,2,4-<br>trichlorobenzene (78), indicating potential low<br>bias. The relative percent difference between<br>the MS and MSD was greater than the<br>laboratory QC limit of 20 for naphthalene (22).<br>Naphthalene and 1,2,4-trichlorobenzene were<br>reported as non-detect (U) in samples CFW-5<br>and CFW-5DUP and were qualified as<br>estimated (UJ). |  |  |  |
| Field D<br>X<br>X                                                                | uplicates<br>D<br>D     | Form I's present and complete<br>RPD criteria (water <30%, soils <50%)<br>met                                      | Identify field duplicate pair and attach list of all compounds with non-compliant RfDs. Indicate qualifiers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Interna                                                                          | Standar                 | d<br>Form VIII present and complete for all                                                                        | Attach copy of Form VIII if criteria was not met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| D                                                                                |                         | samples<br>Area counts within -50 to +100 percent of                                                               | Highlight criteria not met, list samples affected, and list qualifiers added.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| ۵                                                                                | CJ.                     | calib. std.<br>Retention Time within 30 seconds of<br>calib. std.                                                  | OK Per case narrative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Target<br>X                                                                      | Compou                  | inds List (TCL)<br>Form I present and complete for all<br>samples                                                  | Call (Fax) lab for re-submittals. Attach copy of face mile transmission to this review.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Х                                                                                | D                       | Reviewed narrative for anomalies                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Tentati<br>X                                                                     | vely Ider               | tified Compounds (TICs)<br>Form I Part B present and complete for all<br>samples<br>TCL compounds reported as TICs | Call lab for missing data. Fill out TIC Form and submit to data entry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Table '<br>X                                                                     | 1 Check                 | Check Table 1 results against Form I's and ensure all data on Table 1 is correct.                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |

#### REGION I TIER II VALIDATION CHECKLIST Criteria and Qualifications: REGION I Organics Guideline (Draft 12/96) VOLATILE

Comments:

Site: YANKEE ROWE

Project #: 3617087152/02.01

Box #: YR=101

LCS - OK

Reviewer's Signature: na Date: 3/30/10

p:\validate\validate\sops\region1\voa\voat2a.doc
#### Method: 5030B / 8260B Aqueous SOP: 3.3.40 / 3.3.13 Matrix Spike Sample/ Matrix Spike Sample Duplicate Recovery

Lab Name: SDG No, Contractor Project No, Case No, Client No, Lab Code Sample(s):

Macter

Mactec AM01015.13

5970 F

Instrument (D): GC Column:

AM01015,14MS

MS ID: File #: Date/Time Analyzed:

5 Mar 2010 12:08

Northeast Laboratory Services

Restek RTX-VMS, 0,25um ID, 30m

MSD ID: AM01016.16MSD File # F0906.D Date/Time Analyzed: 5 Mar 2010 13:49

|                                     | Spike              | Native S           | Sample       | MS                                                                                                             | MSD                                                                                                            | MS     | MSD    | Recovery       |         | RPD    |
|-------------------------------------|--------------------|--------------------|--------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------|--------|----------------|---------|--------|
|                                     | Added              | Concen             | tration      | Concentration                                                                                                  | Concentration                                                                                                  | - %    | %      | Window         | %       | Limit  |
| Compound                            | ug/L               | . ug               | r.           | ug/L                                                                                                           | ug/L                                                                                                           | Rec. 4 | Rec. I | %              | RPD A   | %      |
| Vinyi Chleride                      | 50.0               | 1.0                | U            | 45.2                                                                                                           | 44.8                                                                                                           | 90,4   | 89.6   | 48 - 133       | 0.889   | 20     |
| Bromomethane                        | 50.0               | 1.0                | U            | 44.0                                                                                                           | 36.7                                                                                                           | 88.0   | 73.4   | 69 - 155       | 18 1    | 20     |
| Acetone                             | 50.0               | 1.0                | U            | 36,9                                                                                                           | 39,7                                                                                                           | 73.8   | 79.4   | D - 239        | 7.31    | 20     |
| 1,1-Dichloroethene                  | 50.0               | 1.0                | U            | 59.2                                                                                                           | 59.8                                                                                                           | 118    | 120    | 42 - 138       | 1.01    | 20     |
| Methylene Chloride                  | 50.0               | 1.0                | U            | 44.6                                                                                                           | 43,8                                                                                                           | 89.2   | 87.6   | 30 - 154       | 1.81    | 20     |
| 1-Butyl-Methyl Ether (MTBE)         | 100                | 2.0                | U            | 92.9                                                                                                           | 94.8                                                                                                           | 92.9   | 94.8   | 71 - 129       | 2.02    | 20     |
| trans-1.2-Dichloroelhene            | 50.0               | 1.0                | U            | 48.5                                                                                                           | 49.0                                                                                                           | 97.0   | 98.0   | 52 - 141       | 1.03    | 20     |
| 1,1-Dichloroethane                  | 50.0               | 1.0                | U            | 47.4                                                                                                           | 48.0                                                                                                           | 94.8   | 96.0   | 44 - 142       | 1.26    | 20     |
| 2-Butanone                          | 50.0               | 1.0                | U            | 42.2                                                                                                           | 44.2                                                                                                           | .84,4  | 88.4   | 47 - 155       | 4.63    | 20     |
| cis-1,2-Dichloroelhene              | 50.0               | 1.0                | U            | 47,3                                                                                                           | 47.4                                                                                                           | 94.6   | 94.8   | 58 - 135       | 0.211   | 20     |
| Chioroform                          | 50.0               | 1.0                | U            | 47.9                                                                                                           | 48.6                                                                                                           | 95.8   | 97.2   | 74 - 121       | 1.45    | 20     |
| 1,1,1-Trichloroethane               | 50.0               | 1.0                | U            | 51.7                                                                                                           | 52.0                                                                                                           | 103    | 104    | 84 - 122       | 0.579   | 20     |
| Carbon Tetrachloride                | 50.0               | 1.0                | U            | 52.6                                                                                                           | 53,8                                                                                                           | 105    | 108    | 81 - 131       | 2.26    | 20     |
| 1.2-Dichloroethane                  | 50.0               | 1.0                | U            | 46,1                                                                                                           | 47.2                                                                                                           | 92.2   | 94,4   | 77 - 131       | 2.36    | 20     |
| Benzene                             | 50.0               | 1.0                | U            | 48.1                                                                                                           | 47.9                                                                                                           | 96.2   | 95.8   | 39 - 140       | 0 417   | 20     |
| Trichlorgethene                     | 50.0               | 1.0                | U            | 56.3                                                                                                           | 57.1                                                                                                           | 113    | 114    | 77 - 123       | 1.41    | 20     |
| 1.2-Dichioropropane                 | 50.0               | 1.0                | U            | 49.6                                                                                                           | 50.9                                                                                                           | 99.2   | 102    | 52 - 133       | 2.59    | 20     |
| Bromodichloromethane                | 50.0               | 1.0                | U I          | 51.6                                                                                                           | 52.7                                                                                                           | 103    | 105    | 76 - 127       | 2.11    | 20     |
| 4-Methyl-2-Pentanone                | 50.0               | 1.0                | U            | 49.6                                                                                                           | 51.0                                                                                                           | 99.2   | 102    | 69 - 128       | 2.78    | 20     |
| cis-1.3-Dichoropropene              | 50.0               | 1.0                | Ŭ            | 51.5                                                                                                           | 52.8                                                                                                           | 103    | 106    | 82 - 127       | 2 49    | 20     |
| Toluene                             | 50.0               | 1.0                | U            | 53.8                                                                                                           | 55,0                                                                                                           | 108    | 110    | 73 - 123       | 2.21    | 20     |
| trans-1.3-Dichloropropene           | 50.0               | 1.0                | U            | 51.6                                                                                                           | 52.4                                                                                                           | 103    | 105    | 84 - 155       | 1.54    | 20     |
| 1.1.2-Trichloroethane               | 50.0               | 1.0                | U            | 51.6                                                                                                           | 51.8                                                                                                           | 103    | 104    | 73 - 134       | 0.387   | 20     |
| 1.3-Dichloropropane                 | 50.0               | 1.0                | U            | 50.7                                                                                                           | 51.6                                                                                                           | 101    | 103    | 73 - 120       | 1.76    | 20     |
| Tetrachloroethene                   | 50.0               | 1.0                | U            | 55.1                                                                                                           | 55.5                                                                                                           | 110    | 111    | 55 - 110       | 6 0 723 | 20     |
| Dibromochloromethane                | 50.0               | 1.0                | U            | 52.8                                                                                                           | 54.0                                                                                                           | 106    | 108    | 62 - 150       | 2.25    | 20     |
| 1.2-Dibromosthane                   | 50.0               | 1.0                | U            | 52.1                                                                                                           | 52.4                                                                                                           | 104    | 105    | 67 - 14        | 0.574   | 20     |
| Chlorobenzene                       | 50.0               | 1.0                | U            | 52.3                                                                                                           | 53.5                                                                                                           | 105    | 107    | 76 - 124       | 2.27    | 20     |
| 1.1.1.2-Tetrachioroethane           | 50.0               | 1.0                | U            | 53.0                                                                                                           | 54.4                                                                                                           | 106    | 109    | 76 - 12        | 2.61    | 20     |
| Ethylbenzene                        | 50.0               | 1.0                | U            | 54.7                                                                                                           | 54,9                                                                                                           | 109    | 110    | 76 - 12        | 0.365   | 20     |
| m.p-Xviene                          | 100                | 2.0                | U            | 110                                                                                                            | 110                                                                                                            | 110    | 110    | 79 - 12        | 5 0.000 | 20     |
| o-Xviene                            | 50.0               | 1.0                | U            | 54.1                                                                                                           | 53,8                                                                                                           | 108    | 108    | 80 - 12        | 0.556   | 20     |
| Styrene                             | 50.0               | 1.0                | Ū            | 52.9                                                                                                           | 53.4                                                                                                           | 106    | 107    | 77 - 12        | 8 0.941 | 20     |
| Bromoform                           | 50.0               | 1.0                | Ū            | 53.3                                                                                                           | 53.2                                                                                                           | 107    | 106    | 59 - 16        | 2 0 188 | 20     |
| 1 1.2.2.Tetrachloroethene           | 50.0               | 1.0                | U            | . 52.1                                                                                                         | 51.2                                                                                                           | 104    | 102    | 55 - 15        | 5 1.74  | 20     |
| 1.3.Dichlorobenzene                 | 50.0               | 1.0                | t ū          | 52.7                                                                                                           | 55.3                                                                                                           | 105    | 111    | 84 - 12        | 3 4.81  | 20     |
| 1 4-Dichiorobenzene                 | 50.0               | 1.0                | t ū          | 51.9                                                                                                           | 55.0                                                                                                           | 104    | 110    | 72 - 12        | 1 5.80  | 20     |
| 1.2.Dichlambenzene                  | 50.0               | 1.0                | t            | 51.8                                                                                                           | 53.3                                                                                                           | 104    | 107    | 78 - 12        | 5 2.85  | 20     |
| 1.2 4.Trichlombenzene               | 50.0               | 10                 | 1 ii         | 38.8                                                                                                           | 46.5                                                                                                           | 77.6   | • 93.0 | 79 - 15        | 6 18.1  | 20     |
| Manhibalana                         | 50.0               | 10                 | t ŭ .        | 35.3                                                                                                           | 43.8                                                                                                           | 70.6   | 87.6   | 42 - 18        | 0 21.6  | 20     |
| 1.2.3.Trichlorchenzene              | 60.0               | 10                 | ti           | 36.4                                                                                                           | 44.2                                                                                                           | 72.8   | 88.4   | 42 - 18        | 0 194   | 20     |
| 1 1 100 Lat. 10 100 DALARAN HEAD IS | 5,0 ° 10° 1 ° 100° | under a starte and | Lauren Maria | An and the second s | and a second | 1000 C |        | terminal bears |         | heread |

RPD Spike Recovery 1 out of out of

40 outside limits 80 outside limits

LES OTRS

#Column to be used to flag recovery and RPD values with an esterisk, \*Values outside of QC limits NC: Not calculable Comments:

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

| Sample ID     | Analysis<br>Date | Sample<br>Designator<br>(Note 1) | All<br>Scheduled<br>Analyses<br>Performed? | Sample<br>Processing<br>Comments? | Units<br>Correct? | Assessment Criteria<br>(Note 2) (Note 3) |
|---------------|------------------|----------------------------------|--------------------------------------------|-----------------------------------|-------------------|------------------------------------------|
| CFW-6         | 3/12/10          | FŚ                               | Yes                                        | 0.К.                              | Yes               | See attached checklist                   |
| SW-4          | 3/12/10          | FS                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| \$W-5         | 3/12/10          | FS                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| CFW-5         | 3/12/10          | FS                               | Yes                                        | O.K.                              | Yes               | See attached checklist                   |
| CFW=5DUP      | 3/12/10          | DU (Field)                       | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| CFW-1         | 3/12/10          | FS                               | Yes                                        | О. <b>К</b> .                     | Yes               | See attached checklist                   |
| SW-1          | 3/12/10          | <b>F</b> S                       | Yes                                        | 0,K,                              | Yes               | See attached checklist                   |
| SW-2          | 3/12/10          | FS                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| SW-3          | 3/12/10          | FS                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| SP-1          | 3/12/10          | FS                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| MW-101A       | 3/12/10          | FS                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| Laboratory QC |                  | L                                |                                            |                                   |                   | ().<br>                                  |
| LRB 031010    | 3/12/10          | BL                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| LCS 031010    | 3/12/10          | QC                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| LCSD 031010   | 3/12/10          | QĈ                               | Yes                                        | O,K,                              | Yes               | See attached checklist                   |
| AM01015.1LD   | 3/12/10          | DU                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| AM01015.1MS   | 3/12/10          | SK                               | Yes                                        | O.K.                              | Yes               | See attached checklist                   |
| AM01015.1MSD  | 3/12/10          | ŚK                               | Yes                                        | <b>О.К</b> ,                      | Yes               | See attached checklist                   |

# Total Metals (excluding mercury)

# NOTE

- 1.0 FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
- 2.0 Reported MDC  $\leq$ Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
- 3.0 Requirements for SK, DU, and QC per section D.
- 1. All Requested analyses performed on all samples? X Yes No
- II. Resolution of Sample Processing/Missing Analytes comments:

No processing issues or missing analytes

Page 1 of 2

RP-05 Rev. 3

- III.
   Resolution of Sample Processing/Missing Analytes comments:

   No processing issues or missing analytes
- IV. Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above): <u>See attached checklist for details on sample qualifications</u>
- V. Data verification calculation sheets are attached(at least one calculation per batch) NA Reviewer Dele S. Date: March 31,2010

# Rev. 3

# ATTACHMENT C ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

| Sample ID     | Analysis<br>Date | Sample<br>Designator<br>(Note 1) | All<br>Scheduled<br>Analyses<br>Performed? | Sample<br>Processing<br>Comments? | Units<br>Correct? | Assessment Criteria<br>(Note 2) (Note 3) |  |  |  |
|---------------|------------------|----------------------------------|--------------------------------------------|-----------------------------------|-------------------|------------------------------------------|--|--|--|
| SW-408        | 3/12/10          | FS                               | Yes                                        | O.K.                              | Yes               | See attached checklist                   |  |  |  |
| SW-011        | 3/12/10          | FS                               | Yes                                        | O.K.                              | Yes               | See attached checklist                   |  |  |  |
| Laboratory QC | Laboratory QC    |                                  |                                            |                                   |                   |                                          |  |  |  |
| LRB 031010    | 3/12/10          | BL                               | Yes                                        | O.K.                              | Yes               | See attached checklist                   |  |  |  |
| LCS 031010    | 3/12/10          | QC                               | Yes                                        | O,K.                              | Yes               | See attached checklist                   |  |  |  |
| LCSD 031010   | 3/12/10          | QC                               | Yes                                        | Ô.K.                              | Yes               | See attached checklist                   |  |  |  |
| AM01015.1LD   | 3/12/10          | DU                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |  |  |  |
| AM01015.1MS   | 3/12/10          | SK                               | Yes                                        | О.К.                              | Yes               | See attached checklist                   |  |  |  |
| AM01015.1MSD  | 3/12/10          | SK                               | Yes                                        | O.K.                              | Yes               | See attached checklist                   |  |  |  |

## **Dissolved Metals (excluding mercury)**

# NOTE

- 1.0FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
- 2.0Reported MDC ≤Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
- 3.0 Requirements for SK, DU, and QC per section D.
- All Requested analyses performed on all samples? X Yes No Ī.
- ĬĬ. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes
- Ш. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes
- IV. Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above): See attached checklist for details on sample qualifications
- Data verification calculation sheets are attached(at least one calculation per batch) NA V. Reviewer Date: March 31,2010 ABU

RP=05

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

| Sample ID     | Analysis<br>Date | Sample<br>Designator<br>(Note 1) | All<br>Scheduled<br>Analyses<br>Performed? | Sample<br>Processing<br>Comments? | Units<br>Correct? | Assessment Criteria<br>(Note 2) (Note 3) |  |  |
|---------------|------------------|----------------------------------|--------------------------------------------|-----------------------------------|-------------------|------------------------------------------|--|--|
| SW-408        | 3/15/10          | FS                               | Yes                                        | O.K.                              | Yes               | See attached checklist                   |  |  |
| SW-011        | 3/15/10          | FS                               | Yes                                        | О. <b>К</b> .                     | Yes               | See attached checklist                   |  |  |
| Laboratory QC | Laboratory QC    |                                  |                                            |                                   |                   |                                          |  |  |
| LRB- 031110B  | 3/15/10          | BL                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |  |  |
| LCS-031110B   | 3/15/10          | QC                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |  |  |
| LCSD-031110B  | 3/15/10          | QC                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |  |  |
| AM01015.1LD   | 3/15/10          | DU                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |  |  |
| AM01015.1M8   | 3/15/10          | SK                               | Yes                                        | O,K.                              | Yes               | See attached checklist                   |  |  |
| AM01015.1MSD  | 3/15/10          | SK                               | Yes                                        | O.K.                              | Yes               | See attached checklist                   |  |  |

#### **Dissolved Mercury**

# NOTE

- 1.0 FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
- 2.0 Reported MDC  $\leq$ Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
- 3.0 Requirements for SK, DU, and QC per section D.
- I. All Requested analyses performed on all samples? X\_Yes No
- II. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes
- III.
   Resolution of Sample Processing/Missing Analytes comments:

   No processing issues or missing analytes
- IV. Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):
   See attached checklist for details on sample qualifications
- V. Data verification calculation sheets are attached (at least one calculation per batch) NA Reviewer Date: March 31,2010

RP-05

Rev. 3

#### RP-05 Rev. 3

# ATTACHMENT C ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

| Sample ID     | Analysis<br>Date | Sample<br>Designator<br>(Note 1) | All<br>Scheduled<br>Analyses<br>Performed? | Sample<br>Processing<br>Comments? | Units<br>Correct? | Assessment Criteria<br>(Note 2) (Note 3) |  |
|---------------|------------------|----------------------------------|--------------------------------------------|-----------------------------------|-------------------|------------------------------------------|--|
| CFW-6         | 3/15/10          | FS                               | Yes                                        | <u>О.К.</u>                       | Yes               | See attached checklist                   |  |
| SW-4          | 3/15/10          | FS                               | Yes                                        | Ô.K.                              | Yes               | See attached checklist                   |  |
| \$W-\$        | 3/15/10          | FS                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |  |
| CFW-5         | 3/15/10          | FS                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |  |
| CFW-5DUP      | 3/15/10          | DU (Field)                       | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |  |
| CFW-1         | 3/15/10          | FS                               | Yes                                        | 0,К,                              | Yes               | See attached checklist                   |  |
| SW-1          | 3/15/10          | FS                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |  |
| SW-2          | 3/15/10          | FS                               | Yes                                        | O.K.                              | Yes               | See attached checklist                   |  |
| SW-3          | 3/15/10          | F8                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |  |
| SP-1          | 3/15/10          | FS                               | Yes                                        | Ô.K.                              | Yes               | See attached checklist                   |  |
| Laboratory QC |                  |                                  | L                                          |                                   | L                 |                                          |  |
| LRB- 031110B  | 3/15/10          | BL                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |  |
| LCS-031110B   | 3/15/10          | QC                               | Yes                                        | O.K.                              | Yes               | See attached checklist                   |  |
| LCSD-031110B  | 3/15/10          | QC                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |  |
| AM01015.1LD   | 3/15/10          | DU                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |  |
| AM01015.1MS   | 3/15/10          | SK                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |  |
| AM01015.1MSD  | 3/15/10          | <u>SK</u>                        | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |  |

# **Total Mercury**

# NOTE

- 1.0 FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
- 2.0 Reported MDC  $\leq$ Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
- 3.0 Requirements for SK, DU, and QC per section D.
- I. All Requested analyses performed on all samples? X Yes No
- II. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes

- III. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes
- IV. Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above): See attached checklist for details on sample qualifications
- V. Data verification calculation sheets-are attached(at least one calculation per batch) NA Reviewer Date: March 31,2010

#### **REGION I TIER II VALIDATION CHECKLIST** Criteria and Qualifiers: Region I Guidelines (6/13/88 Modified 2/89) INORGANIC

#### SITE: YANKEE ROWE Project #: 3617087152/02.01 Box #:YR-101

Sample IDs: See attached tracking sheet or samples listed: CFW-6, SW-4, SW-5, CFW-5, CFW-5DUP, CFW-1, SW-1, SW-2, SW-3, SP-1, SW-408, SW-011, MW-101A

| YES   | No                                                           | VALIDATION CHECK                                                               | NONCOMPLIANCE NOTES                                                                                                        |
|-------|--------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| X     | D                                                            | Hold Times Met                                                                 | Attach list of samples which exceed hold times.<br>Indicate total hold time and qualifiers.                                |
| Х     | D                                                            | Samples preserved                                                              |                                                                                                                            |
| Data  | Data Completeness<br>X                                       |                                                                                | Comments on missing information (if any) and action                                                                        |
| X     |                                                              |                                                                                | taken.                                                                                                                     |
| Х     | C                                                            | Original shipping and receiving<br>documents                                   | Chain of Custody                                                                                                           |
| X     | X   Lab records of sample transfer, preparation and analysis |                                                                                | Internal laboratory chain of custody                                                                                       |
| Calit | oration                                                      |                                                                                | 100: at least one block and ane standard                                                                                   |
| ΞŴ    | <b>₽</b> □<br>                                               | Appropriate number of<br>standards used to establish<br>calibration curve.     | AA and CN <sup>°</sup> : at least one blank and one standards,<br>with one standard at the CRDL for AA.                    |
| ۵     |                                                              | Correlation coefficient > 0.995.                                               | Hg: at least one blank and four standards                                                                                  |
|       | prod                                                         | Polloustad dalls                                                               | Correlation coefficient criteria applicable to all analyses except ICP                                                     |
| Ч     | L                                                            | Calibrated daily.                                                              | If correlation coefficient is not acceptable, discuss deficiencies, affected samples and action taken.                     |
|       |                                                              | CRI/CRA analyzed at the proper<br>frequency in the analytical run<br>sequence. | See method.                                                                                                                |
|       |                                                              | CRI/CRA %R within acceptance range.                                            | No acceptance range dictated by CLP methods or<br>National Functional Guidelines. See regional guidelines<br>for guidance. |
|       | G.                                                           | ICV/CCV %R within acceptance<br>range.                                         | 90-110% for ICP, 85-115% for CN <sup>*</sup> , 80-120% for Hg                                                              |
| D     | D                                                            | CCVs analyzed at the proper frequency.                                         | Every 10 samples or every 2 hrs.                                                                                           |
|       |                                                              |                                                                                | Attach copy of Form II (2A) for all noncompliant ICVs<br>and CCVs. Circle non-compliances and indicate<br>qualifiers.      |
|       |                                                              | Traceable ICV source.                                                          | OK – Per case narrative                                                                                                    |

| Blanks                                   |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Method:<br>X 🛛                           | Method blank was prepared with<br>each batch of samples or with a<br>maximum of 20 samples                 | Attach copy of Form III (3). Circle all contaminants;<br>Indicate action to be taken, action level if applicable, and<br>samples affected.                                                                                                                                                                                                                              |  |  |  |
| ONAG                                     | Results >IDL                                                                                               | Establish action level at 5Xcontamination level. Qualify data per Region I Guidelines.                                                                                                                                                                                                                                                                                  |  |  |  |
|                                          | Absolute value negative method<br>blank results > 2xIDL                                                    | Establish action level at 5X abs value of result. J (+ <al) (nd).<="" and="" td="" uj=""></al)>                                                                                                                                                                                                                                                                         |  |  |  |
| 0.00                                     | Reanalysis was conducted if necessary                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Calibration                              | Blanks                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| ONAO                                     | ICB/CCB results > IDL                                                                                      | See above under method blank for action.                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                          | Absolute value of negative                                                                                 | See above under method blank for action.                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                          | CCB analyzed every 10 samples<br>or 2 hrs.                                                                 | Attach copy of Form III (3). Circle all contaminants;<br>indicate action to be taken, action level if applicable, and                                                                                                                                                                                                                                                   |  |  |  |
| Field Blank                              | 9<br>Deculie SIDI                                                                                          | samples affected.                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| FILA WFT                                 |                                                                                                            | OK- Per case narrative                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                          | e Check Sample<br>ICS analyzed at proper frequency<br>ICS AB %R 80%-120%                                   | An ICS must be run at the beginning and end of run or every 8 hours.                                                                                                                                                                                                                                                                                                    |  |  |  |
| For sample<br>50% of inte<br>solution A: | s with interference concentrations ><br>ference concentration in ICS                                       | Interference's are Calcium, Aluminum, Iron and Magnesium.                                                                                                                                                                                                                                                                                                               |  |  |  |
| ONTO                                     | Are positive ICS A results >IDL<br>for analytes not present in the ICS<br>A solution?                      | If yes, J sample result (>2XIDL) for that analyte.                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                          | Are negative ICS A results                                                                                 | If yes, UJ (ND) sample result for that analyte.                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Securit Connection                       | >2XIDL for analytes not present<br>in the ICS A solution?                                                  | OK – Per case narrative                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Matrix Spik                              | 09                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                          | All compounds are within %R of<br>75-125% excluding results<br>exceeding the spike<br>concentration by ≥4x | Attach copy of Form V (Part 1) 5A for noncompliant %<br>Recoveries. The MS/MSD associated with sample<br>CFW-5 and its field duplicate CFW-5DUP had percent<br>recoveries above the upper laboratory QC limit of<br>125% for selenium (133/132), indicating potential high<br>bias. Selenium detections samples CFW-5 and CFW-<br>5DUP were qualified as estimated (J). |  |  |  |
| DNAD                                     | Were post-digestion spikes                                                                                 | Circle all non-compliances and indicate qualifiers.                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Υ.<br>Υ                                  | reported on VB for ICP, flame, Hg<br>and CN for unacceptable pre-<br>digestion spike recoveries            | Ca – saturated %rec not calculated, OK; Fe and Mn<br>– sample concentration >4x spike, OK.                                                                                                                                                                                                                                                                              |  |  |  |
|                                          | Was a field blank used for spike<br>analysis                                                               |                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                          |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |

| Labor<br>D | ratory C<br>X                                                                      | Ouplicate<br>Was a field blank used as the lab<br>duplicate                                                                                | Attach copy of Lab-Duplicate form for criteria not met.<br>Indicate exceeded limits, samples affected, and action<br>taken.             |
|------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Х          | G                                                                                  | Is the RPD within control limits of<br>±20% (35% for soil) for sample<br>values >5x CRDL                                                   |                                                                                                                                         |
| X          | Is the control limit of ± CRDL<br>(35% for soil) met for sample<br>values <5x CRDL |                                                                                                                                            |                                                                                                                                         |
| X          | D                                                                                  | Was a duplicate analyzed for<br>every matrix and every 20<br>samples or batch                                                              |                                                                                                                                         |
| Field      | Dunlin                                                                             | ate                                                                                                                                        | сание саминие и байсай амилии импиние кал наримария и макеевина и до стебли станити и на нарима и на нарима и н                         |
| Х          |                                                                                    | For sample values >5x CRDL, the<br>RPD control limit of ± 30% (50%<br>for soil) was met                                                    | Attach list of samples that did not meet criteria requirements and qualifiers used.                                                     |
| X          | 0                                                                                  | For sample values <5x CRDL, the<br>control limit of ±2x CRDL (4x<br>CRDL for soil) was met                                                 |                                                                                                                                         |
| Labo<br>X  | ratory (                                                                           | Control Samples (LCS)<br>Percent recoveries are within<br>limits of 80-120% for aqueous<br>samples and within control limits<br>for soils. | Attach copy of Form VII (7) from for all noncompliant recoveries. Circle non-compliances and indicate qualifiers, and samples affected. |
| X          | 0                                                                                  | An LCS was analyzed for each<br>matrix, batch of samples, or every<br>20 samples.                                                          |                                                                                                                                         |
| Furni      |                                                                                    | Analysis<br>Spike recovery criteria (85 ≲ % R<br>≤ 115) was met                                                                            | Attach sheet indicating criteria not met and qualifiers used.                                                                           |
| a          |                                                                                    | Duplicate injection criteria met                                                                                                           |                                                                                                                                         |
|            | Ο                                                                                  | Are "M" flags present on Form I's<br>indicating failing duplicate<br>injection criteria                                                    |                                                                                                                                         |
|            |                                                                                    | Are "S" flags present on Form I's<br>indicating MAS analysis was<br>required                                                               |                                                                                                                                         |
| Seria      | I Dilutio                                                                          | on                                                                                                                                         |                                                                                                                                         |
| - HA       | ~□                                                                                 | Are any percent difference criteria > 15%                                                                                                  | Attach copy of Serial Dilution Form for criteria not met.<br>Circle criteria not met, samples affected, and qualifiers<br>used.         |
|            | 0                                                                                  | Are results of the diluted samples<br>> the original sample results                                                                        | OK – Per case narrative                                                                                                                 |
| Revi       | ewer's                                                                             | Signature:                                                                                                                                 | Comments:                                                                                                                               |
|            | <u> </u>                                                                           | 12 UD                                                                                                                                      |                                                                                                                                         |
| Dale       | annahanna                                                                          |                                                                                                                                            |                                                                                                                                         |

 $\dot{\Phi}$ 

#### Form 5

#### USEPA 200.7/6010B Aqueous Matrix Spike/Matrix Spike Duplicate Recovery

|                                                                     | Spike<br>Added | Sample<br>Concentration | MS<br>Concentration      | MSD<br>Concentration |   |
|---------------------------------------------------------------------|----------------|-------------------------|--------------------------|----------------------|---|
| Date Analyzed:                                                      | 3/12/2010      |                         | Date Analyzed:           | 3/12/2010            |   |
| Date Digested                                                       | 3/10/2010      |                         | Date Digested            | a IUIZUIU            |   |
| M5 ID:                                                              | AM01015.1      | MS .                    | MSD ID:<br>Date Directed | AM01015.1 MSE        | ) |
| Date Analyzed:                                                      | 3/12/2010      |                         |                          |                      |   |
| Date Digested                                                       | 3/10/2010      |                         |                          |                      |   |
| Native Sample ID:                                                   | AM01015.1      |                         |                          |                      |   |
| Project No.<br>Case No.<br>Client No.<br>Lab Code<br>Instrument ID: | ICP 3000XI     |                         |                          |                      |   |
| SDG No.<br>Contractor:                                              | Macteo         |                         |                          |                      |   |
| Lab Name:                                                           | Northeast L    | aboratory Services      |                          |                      |   |

|                    | Spike | Sample        |                     | MS            | MSD           | MS   |   | MSD  |           | Recovery        |      | RPD   |
|--------------------|-------|---------------|---------------------|---------------|---------------|------|---|------|-----------|-----------------|------|-------|
|                    | Added | Concentration |                     | Concentration | Concentration | %    |   | 6/6  |           | Window          | %    | Limit |
| Analyte/Wavelength | ma/L  | mg/L          |                     | mg/L          | mg/L          | Rec  |   | Rec. | 11        | <sup>6</sup> /6 | RPD  | %     |
| Ag 338.289         | 0.100 | 0,005         | U                   | 0,098         | 0,106         | 98.Õ |   | 106  |           | 75-125          | 7.84 | 20.0  |
| As 188.979         | 0.250 | 0.010         | U                   | 0.239         | 0.239         | 95.6 |   | 95.6 |           | 75-125          | 0,00 | 20.0  |
| Ba 233.527         | 0.500 | 0.050         |                     | 0.516         | 0.496         | 103  |   | 99,2 |           | 75-125          | 0.00 | 20.0  |
| Ca 317.933         | 50.0  | SATURATED     | ware and the second | SATURATED     | SATURATED     | 0    | * | Ô    | *         | 75-125          | 0.00 | 20,0  |
| Cd 228.802         | 0.250 | 0.004         | U                   | 0,245         | 0.240         | 98.0 |   | 96.0 | سند       | 75-125          | 2,06 | 20.0  |
| Cr 267.716         | 0.250 | 0.010         | U                   | 0.249         | 0.239         | 100  |   | 95,6 |           | 75-125          | 4.10 | 20.0  |
| Cu 324.752         | 0,250 | 0,010         | U                   | 0.250         | 0,239         | 100  |   | 95.6 |           | 75-125          | 4,50 | 20,0  |
| Fe 238,204         | 0.050 | 44,7          | iner seens bien     | 44,9          | 44.3          | 0    | * | Ø    | *         | 75-125          | 0,00 | 20.0  |
| Mn 257,610         | 0.050 | 3,80          |                     | 3.80          | 3.75          | Ō    | * | 0    | *         | 75-125          | 0.00 | 20.0  |
| Na 330,237         | 10,0  | 2.90          |                     | 8.30          | 7.93          | 83.0 |   | 79,3 |           | 75-125          | 4,56 | 20.0  |
| Pb 220.353         | 0.250 | 0,010         | U                   | 0.252         | 0,249         | 1.01 |   | 1.00 |           | 75-125          | 1.20 | 20,0  |
| Se 196.026         | 1,000 | 0.021         |                     | 1,33          | 1,32          | 133  | 9 | (32  | $\square$ | 75-125          | 0.75 | 20.0  |
| Zn 202.548         | 0.25  | 0,020         | U                   | 0,251         | 0.256         | 100  |   | 102  |           | 75-125          | 1,97 | 20,0  |

| RPD   |          | Ó | out | Øf |
|-------|----------|---|-----|----|
| Spike | Recovery | 8 | out | 0f |

13 outside 26 outside

outside window outside window

\*Values outside acceptance window Comments:

Sample results and sample duplicate results are reported from undiluted samples for fair comparison. This is because the matrix spikes were not diluted.

Form V-IN

### **RP-05** Rev. 3

# ATTACHMENT C ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

| Sample ID     | Analysis<br>Date | Sample<br>Designator<br>(Note 1) | All<br>Scheduled<br>Analyses<br>Performed? | Sample<br>Processing<br>Comments? | Units<br>Correct? | Assessment Criteria<br>(Note 2) (Note 3) |
|---------------|------------------|----------------------------------|--------------------------------------------|-----------------------------------|-------------------|------------------------------------------|
| CFW-6         | 3/5/10           | FS                               | Yes                                        | 0.К.                              | Yes               | See attached checklist                   |
| SW-4          | 3/5/10           | FS                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| SW-5          | 3/5/10           | FS                               | Yes                                        | О.К.                              | Yes               | See attached checklist                   |
| CFW-5         | 3/11/10          | FS                               | Yes                                        | Ô.K.                              | Yes               | See attached checklist                   |
| CFW-5DUP      | 3/5/10           | DU (Field)                       | Yes                                        | 0.К.                              | Yes               | See attached checklist                   |
| CFW-1         | 3/5/10           | FS                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| SW-1          | 3/5/10           | FS                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| SW-2          | 3/5/10           | FS                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| <b>\$W</b> -3 | 3/5/10           | FS                               | Yes                                        | О.К.                              | Yes               | See attached checklist                   |
| Laboratory QC | L                |                                  |                                            |                                   |                   |                                          |
| Blank         | 3/5/10           | BL                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| LCS           | 3/5/10           | QC                               | Yes                                        | O.K.                              | Yes               | See attached checklist                   |
| LCSD          | 3/5/10           | QC                               | Yes                                        | 0,K,                              | Yes               | See attached checklist                   |
| Blank         | 3/11/10          | BL                               | Yes                                        | 0,K.                              | Yes               | See attached checklist                   |
| LCS           | 3/11/10          | QC                               | Yes                                        | Ô,K,                              | Yes               | See attached checklist                   |
| LCSD          | 3/11/10          | QC                               | Yes                                        | 0.К.                              | Yes               | See attached checklist                   |
| AM01015.8MS   | 3/11/10          | SK                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| AM01015.9MSD  | 3/11/10          | SK.                              | Yes                                        | 0,K,                              | Yes               | See attached checklist                   |

### Alkalinity

#### NOTE

- FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = 1.0 Spike
- Reported MDC ≤Required MDC for FS, DU, BL. Yield for all samples evaluated 2.0when reported.
- Requirements for SK, DU, and QC per section D. 3.0
- All Requested analyses performed on all samples? X Yes No Ť.
- Resolution of Sample Processing/Missing Analytes comments: ĪĪ.

No processing issues or missing analytes

Page 1 of 2

- III. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes
- IV. Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above): See attached checklist for details on sample qualifications
- V. Data verification calculation sheets are attached(at least one calculation per batch) NA Reviewer Date: March 31,2010

Project:<u>YANKEE ROWE</u> Project #:<u>3617087152/02.01</u> Date:<u>3/30/10</u>

0K

#### Method:<u>Alkalinity</u> Laboratory and SDG:<u>YR-101</u> Reviewer:<u>Bradley B. LaForest, NRCC-EAC</u>

#### Sample IDs: CFW-6, SW-4, SW-5, CFW-5, CFW-5DUP, CFW-1, SW-1, SW-2, SW-3

1. Case Narrative and Data Package Completeness

| OK .             | Case Ivari aure and Data i accage Completences |
|------------------|------------------------------------------------|
| 2.<br>ok         | Holding Times                                  |
| <u>з</u> .<br>ок | QC Blanks                                      |
| 4.<br>Na         | Initial Calibration Records                    |
| 5.<br>Na         | Continuing Calibration Records                 |
| 6.<br>OK         | Laboratory Control Sample Review               |
| 7.<br>OK         | field Duplicate Precision                      |
| 8.               | Matrix Spike Results (if applicable)           |

P:/Projects/3617087152 - 3 Yankee GW Monitoring/3.0\_Field\_Lab\_Data/3.3\_Data/Yankee Rowe/Validation/2010/Chemistry/Checklists/Alkalinity.doc

#### RP=05 Rev. 3

# ATTACHMENT C ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

| Sample ID     | Analysis<br>Date | Sample<br>Designator<br>(Note 1) | All<br>Scheduled<br>Analyses<br>Performed? | Sample<br>Processing<br>Comments? | Units<br>Correct? | Assessment Criteria<br>(Note 2) (Note 3)          |
|---------------|------------------|----------------------------------|--------------------------------------------|-----------------------------------|-------------------|---------------------------------------------------|
| CFW-6         | 3/3/10           | FS                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                            |
| \$W-4         | 3/3/10           | FS                               | Yes                                        | O.K.                              | Yes               | See attached checklist                            |
| SW-5          | 3/3/10           | FS                               | Yes                                        | О.К.                              | Yes               | See attached checklist                            |
| CFW-5         | 3/3/10           | FS                               | Yes                                        | O.K.                              | Yes               | See attached checklist                            |
| CFW-5DUP      | 3/3/10           | DU (Field)                       | Yes                                        | 0.K.                              | Yes               | See attached checklist                            |
| CFW-1         | 3/4/10           | FS                               | Yes                                        | <u>О.К.</u>                       | Yes               | See attached checklist                            |
| SW-1          | 3/4/10           | FS                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                            |
| SW-2          | 3/4/10           | FS                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                            |
| SW-3          | 3/4/10           | FS                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                            |
| Laboratory QC | L                | L                                | â                                          |                                   |                   | L. <u>2007.0000000000000000000000000000000000</u> |
| SBLK          | 3/3/10           | BL                               | Yes                                        | 0,K,                              | Yes               | See attached checklist                            |
| LCS           | 3/3/10           | QC                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                            |
| LCSD          | 3/3/10           | QC                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                            |
| AM01015       | 3/3/10           | SK                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                            |
| AM01015       | 3/3/10           | SK                               | Yes                                        | Ô,K,                              | Yes               | See attached checklist                            |
| SBLK          | 3/4/10           | BL                               | Yes                                        | О. <b>К</b> .                     | Yes               | See attached checklist                            |
| LCS           | 3/4/10           | QC                               | Yes                                        | 0. <b>K</b> .                     | Yes               | See attached checklist                            |
| LCSD          | 3/4/10           | QC                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                            |

#### Nitrate, Sulfate, Chloride

## NOTE

- 1.0 FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
- 2.0 Reported MDC ≤Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
- 3.0 Requirements for SK, DU, and QC per section D.
- I. All Requested analyses performed on all samples? X Yes No
- II. Resolution of Sample Processing/Missing Analytes comments:

No processing issues or missing analytes

Page 1 of 2

- III. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes
- IV. Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above): See attached checklist for details on sample qualifications
- V. Data verification calculation sheets are attached(at least one calculation per batch) NA Reviewer March 31,2010

Project: <u>YANKEE ROWE</u> Project #:<u>3617087152/02.01</u> Date:<u>3/30/10</u>

#### Sample IDs: CFW-6, SW-4, SW-5, CFW-5, CFW-5DUP, CFW-1, SW-1, SW-2, SW-3

1. Case Narrative and Data Package Completeness

OK

2. Holding Times

OK

3. QC Blanks

OK

4. Initial Calibration Records

ŇA

5. Continuing Calibration Records NA

.

6. Laboratory Control Sample Review The laboratory control sample duplicate associated with a subset of samples had a percent recovery above the laboratory upper QC limit of 110 for sulfate (117), indicating potential high blas. Sulfate detections in samples CFW-6, SW-4, and SW-5 were qualified as estimated (J).

7. Field Duplicate Precision

0K

8. Matrix Spike Results (if applicable)

The matrix spike/matrix spike duplicate associated with sample CFW-5 and its field duplicate CFW-5DUP had percent recoveries below the laboratory lower QC limit of 90 for chloride (88/88), indicating potential low bias. Chloride results associated samples CFW-6, SW-4, SW-5, CFW-5, CFW-5DUP, CFW-1, SW-1, SW-2, and SW-3 were qualified as estimated (J/UJ).

Lab Name: SDG No. Contractor: Project No. Case No. Client No. Lab Code:

Northeast Laboratory Services

Mactec

AM01012-AM01016, AM01105-AM01108

Instrument ID: Date Analyzed: Concentration Units: DIONEX ION CHROMATOGRAPH 600 3/3/2010, 03/04/10 mg/L

|                  |      |             |       |              |        |       | RPD   | Rec.      |
|------------------|------|-------------|-------|--------------|--------|-------|-------|-----------|
| Analyte          | True | Found (LCS) | %R    | Found (LCSD) | %R     | %RPD  | Limit | Limit     |
| Nitrate: 3/3/10  | 10.0 | 10 37       | 103.7 | 10,33        | 103.3. | 0.386 | 20.0  | .90.0-110 |
| Sulfate: 3/3/10  | 25.0 | 25.0        | 100,/ | 29.3         | (117)  | 15,86 | 20.0  | 90,0-110  |
| Chloride; 3/3/10 | 25.0 | 24,6        | 98    | 24.5         | 98     | 0.285 | 20.0  | 90,0-110  |

|                  | [    |             |      |              |       |       | RPD   | Rec.     |
|------------------|------|-------------|------|--------------|-------|-------|-------|----------|
| Analyte          | True | Found (LCS) | %R   | Found (LCSD) | %R    | %RPD  | Limit | Limit    |
| Nitrate: 3/4/10  | 10.0 | 10,1        | 101  | 10.11        | 101.1 | 0.60  | 20.0  | 90.0-110 |
| Sulfate: 3/4/10  | 25.0 | 24,3        | 97 V | 25.1         | 100 🦨 | 3,038 | 20,0  | 90,0-110 |
| Chloride: 3/4/10 | 25,0 | 24,0        | 96   | 24.0         | 96    | 0.000 | 20.0  | 90.0-110 |

RPD

out of Ŏ ]out of

outside limits 6

Spike Recovery

12 outside limits

mon

| Lab Name:                             | Northeast Laboratory Services |  |  |  |  |
|---------------------------------------|-------------------------------|--|--|--|--|
| SDG No.<br>Contractor:                | Mactec                        |  |  |  |  |
| Project No.<br>Case No.<br>Client No. |                               |  |  |  |  |
| Lab Code:                             |                               |  |  |  |  |
| Instrument ID:                        | DIONEX ION CHROMATOGRAPH      |  |  |  |  |

Date Analyzed: Concentration Units:

DIONEX ION CHROMATOGRAPH 600 3/3/2010, 3/4/2010 mg/L

Lab Sample ID:

AM01015

Ø

2

]out of

| [                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Spiked |         |   |         | Spiked |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         | 1           |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|---|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|-------------|
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample |         |   |         | Sample |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | NEES    | A Summer HI |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Result | Sample  |   |         | Result |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | %RPD    | Limit %     |
| Analyte                                      | Spike Added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (MS)   | Results | Q | %R      | (MSD)  | %R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Limit %R | MS/MSD  | RPD         |
| Nitrate                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.8    | 0,50    | U | 98      | 9,8    | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90-110   | 0 00000 | 20.0        |
| Sulfate                                      | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.5   | 0.10    | U | 98      | 24.9   | 292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90-110   | 1 506   | 20.0        |
| Chloride                                     | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27,0   | 5,08    |   | (87.6*) | 271    | (87,9*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90-110   | 0.319   | 20,0        |
| Laurence and the second second second second | Landersteinen er einer ei |        |         |   |         |        | Constanting of the local division of the loc |          |         |             |

RPD

Spike Recovery

3 outside limits

out of 6 ou

6 outside limits

MAK

RP=05 Rev. 3

# ATTACHMENT C ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

| Sample ID     | Analysis<br>Date | Sample<br>Designator<br>(Note 1) | All<br>Scheduled<br>Analyses<br>Performed? | Sample<br>Processing<br>Comments?            | Units<br>Correct? | Assessment Criteria<br>(Note 2) (Note 3) |
|---------------|------------------|----------------------------------|--------------------------------------------|----------------------------------------------|-------------------|------------------------------------------|
| CFW-6         | 3/10/10          | FS                               | Yes                                        | 0.K.                                         | Yes               | See attached checklist                   |
| SW-4          | 3/10/10          | FS                               | Yes                                        | 0,K,                                         | Yes               | See attached checklist                   |
| SW-5          | 3/10/10          | FS                               | Yes                                        | 0.K.                                         | Yes               | See attached checklist                   |
| CFW-5         | 3/10/10          | FS                               | Yes                                        | О.К.                                         | Yes               | See attached checklist                   |
| CFW-5DUP      | 3/10/10          | DU (Field)                       | Yes                                        | 0.K.                                         | Yes               | See attached checklist                   |
| CFW-1         | 3/10/10          | FS                               | Yes                                        | Ō,K,                                         | Yes               | See attached checklist                   |
| SW-1          | 3/10/10          | FS                               | Yes                                        | О.К.                                         | Yes               | See attached checklist                   |
| SW-2          | 3/10/10          | FS                               | Yes                                        | O.K.                                         | Yes               | See attached checklist                   |
| SW-3          | 3/10/10          | FS                               | Yes                                        | 0,K,                                         | Yes               | See attached checklist                   |
| Laboratory QC |                  |                                  |                                            | audu ayaan ayaa ahaa ahaa ahaa ahaa ahaa aha |                   |                                          |
| Blank         | 3/10/10          | BL                               | Yes                                        | O.K.                                         | Yes               | See attached checklist                   |
| LCS           | 3/10/10          | QC                               | Yes                                        | О.К.                                         | Yes               | See attached checklist                   |
| LCSD          | 3/10/10          | QC                               | Yes                                        | Ō.K.                                         | Yes               | See attached checklist                   |
| AM01108MS     | 3/10/10          | SK                               | Yes                                        | 0.K.                                         | Yes               | See attached checklist                   |
| AM01108MSD    | 3/10/10          | SK.                              | Yes                                        | Ô.K.                                         | Yes               | See attached checklist                   |

## Chemical Oxygen Demand

### NOTE

- 1.0 FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
- 2.0 Reported MDC ≤Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
- 3.0 Requirements for SK, DU, and QC per section D.
- I. All Requested analyses performed on all samples? X Yes No
- II. Resolution of Sample Processing/Missing Analytes comments: No processing issues or missing analytes
- III.
   Resolution of Sample Processing/Missing Analytes comments:

   No processing issues or missing analytes

Page 1 of 2

- IV. Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above): See attached checklist for details on sample qualifications
- V. Data verification calculation sheets are attached(at least one calculation per batch) NA Reviewer Buck B. Date: <u>April 2,2010</u>

Project:<u>YANKEE ROWE</u> Project #:<u>3617087152/02.01</u> Date:<u>3/30/10</u>

Sample IDs: CFW-6, SW-4, SW-5, CFW-5, CFW-5DUP, CFW-1, SW-1, SW-2, SW-3

1. Case Narrative and Data Package Completeness

OK

2. Holding Times OK

3. QC Blanks

OK

4. Initial Calibration Records NA

5. Continuing Calibration Records NA

- 6. Laboratory Control Sample Review OK
- 7. Field Duplicate Precision OK
- Oħ
- 8. Matrix Spike Results (if applicable)

0K

# Rev. 3

# ATTACHMENT C ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

| Sample ID     | Analysis<br>Date | Sample<br>Designator<br>(Note 1) | All<br>Scheduled<br>Analyses<br>Performed? | Sample<br>Processing<br>Comments? | Units<br>Correct? | Assessment Criteria<br>(Note 2) (Note 3) |
|---------------|------------------|----------------------------------|--------------------------------------------|-----------------------------------|-------------------|------------------------------------------|
| CFW-6         | 3/4/10           | FS                               | Yes                                        | 0.%.                              | Yes               | See attached checklist                   |
| SW-4          | 3/4/10           | FS                               | Yes                                        | О.К.                              | Yes               | See attached checklist                   |
| SW-5          | 3/4/10           | FS                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| CFW-5         | 3/4/10           | fs                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| CFW-5DUP      | 3/8/10           | DU (Field)                       | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| CFW-1         | 3/8/10           | FS                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| SW-1          | 3/8/10           | FS                               | Yes                                        | O.K.                              | Yes               | Sec attached checklist                   |
| SW-2          | 3/8/10           | FS                               | Yes                                        | O.K.                              | Yes               | See attached checklist                   |
| SW-3          | 3/8/10           | FS                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| Laboratory QC | 1                |                                  |                                            |                                   |                   |                                          |
| Blank         | 3/4/10           | BL                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| LCS           | 3/4/10           | QC                               | Yes                                        | 0.К.                              | Yes               | See attached checklist                   |
| LCSD          | 3/4/10           | QC                               | Yes                                        | O,K,                              | Yes               | See attached checklist                   |
| AM01015D      | 3/4/10           | DU                               | Yes                                        | O.K.                              | Yes               | See attached checklist                   |
| Blank         | 3/8/10           | BL                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| LCS           | 3/8/10           | QC                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| LCSD          | 3/8/10           | QC                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| AM01105D      | 3/8/10           | DU                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| AM01016MS     | 3/8/10           | SK                               | Yes                                        | O.K.                              | Yes               | See attached checklist                   |

#### Cyanide

# NOTE

- FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = 1.0 Spike
- Reported MDC ≤Required MDC for FS, DU, BL. Yield for all samples evaluated 2.0when reported.
- Requirements for SK, DU, and QC per section D. 3.0
- All Requested analyses performed on all samples? X Yes No Ĭ,
- Resolution of Sample Processing/Missing Analytes comments: Π,

Page 1 of 2

No processing issues or missing analytes

- III.
   Resolution of Sample Processing/Missing Analytes comments:

   No processing issues or missing analytes
- IV.
   Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above):

   See attached checklist for details on sample qualifications
- V. Data verification calculation speets are attached(at least one calculation per batch) NA Reviewer Durch & Date: March 31,2010

Project: <u>YANKEE ROWE</u> Project #:<u>3617087152/02.01</u> Date:<u>3/30/10</u>

Sample IDs: CFW-6, SW-4, SW-5, CFW-5, CFW-5DUP, CFW-1, SW-1, SW-2, SW-3

1. Case Narrative and Data Package Completeness

ОK

2. Holding Times OK

3. QC Blanks OK

4. Initial Calibration Records

5. Continuing Calibration Records

6. Laboratory Control Sample Review OK

7. Field Duplicate Precision OK

8. Matrix Spike Results (if applicable) OK

P:\Projects\3617087152 = 3 Yankee GW Monitoring\3.0\_Field\_Lab\_Data\3.3\_Data\Yankee Rowe\Validation\2010\Chemistry\Cheeklists\Cyanide.doc

RP-05 Rev. 3

## ATTACHMENT C ASSESSMENT OF DATA QUALITY

List each analysis individually. Use a separate table for QC. Duplicates, Blanks and Spikes. (Several pages will be required for each batch)

| Sample ID         | Analysis<br>Date                               | Sample<br>Designator<br>(Note 1) | All<br>Scheduled<br>Analyses<br>Performed? | Sample<br>Processing<br>Comments? | Units<br>Correct? | Assessment Criteria<br>(Note 2) (Note 3) |
|-------------------|------------------------------------------------|----------------------------------|--------------------------------------------|-----------------------------------|-------------------|------------------------------------------|
| CFW-6             | 3/10/10                                        | FS                               | Yes                                        | О.К.                              | Yes               | See attached checklist                   |
| SW-4              | 3/10/10                                        | FS                               | Yes                                        | Ô.K.                              | Yes               | See attached checklist                   |
| SW-5              | 3/10/10                                        | FS                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| CFW-5             | 3/10/10                                        | FS                               | Yes                                        | О.К.                              | Yes               | See attached checklist                   |
| CFW-5DUP          | 3/10/10                                        | DU (Field)                       | Yes                                        | Ô.K.                              | Yes               | See attached checklist                   |
| CFW=1             | 3/10/10                                        | FS                               | Yes                                        | О.К.                              | Yes               | See attached checklist                   |
| SW-1              | 3/10/10                                        | FS                               | Yes                                        | 0,K,                              | Yes               | See attached checklist                   |
| SW-2              | 3/10/10                                        | FS                               | Yes                                        | 0,K.                              | Yes               | See attached checklist                   |
| SW-3              | 3/10/10                                        | FS                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| Laboratory QC     | Augusta and and and and and and and and and an |                                  |                                            |                                   |                   |                                          |
| Blank             | 3/10/10                                        | BL                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| LCS               | 3/10/10                                        | QC                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| LCSD              | 3/10/10                                        | QC                               | Yes                                        | O.K.                              | Yes               | See attached checklist                   |
| LCS Second Source | 3/10/10                                        | QC                               | Yes                                        | 0.K.                              | Yes               | See attached checklist                   |
| AM01108           | 3/10/10                                        | DU                               | Yes                                        | 0, <b>K</b> ,                     | Yes               | See attached checklist                   |

### Total Dissolved Solids

# NOTE

- 1.0 FS = Field Sample, BL = Blank, QC = Lab Quality Control. DU = Duplicate, SK = Spike
- 2.0 Reported MDC ≤Required MDC for FS, DU, BL. Yield for all samples evaluated when reported.
- 3.0 Requirements for SK, DU, and QC per section D.
- I. All Requested analyses performed on all samples? X Yes No
- II. Resolution of Sample Processing/Missing Analytes comments:
   <u>No processing issues or missing analytes</u>
- III.
   Resolution of Sample Processing/Missing Analytes comments:

   No processing issues or missing analytes

RP-05 Rev. 3

# ATTACHMENT C ASSESSMENT OF DATA QUALITY

IV. Resolution of Anomalies in QC, Duplicates, Spikes, or Blanks (Identified above): See attached checklist for details on sample qualifications

Data verification calculation sheets are attached (at least one calculation per batch) NA V. Reviewer Date: March 31,2010 Nal

Project: <u>YANKEE ROWE</u> Project #:<u>3617087152/02.01</u> Date:<u>3/30/10</u> Method:<u>TDS</u> Laboratory and SDG:<u>YR-101</u> Reviewer:<u>Bradley B. LaForest, NRCC-EAC</u>

Sample IDs: CFW-6, SW-4, SW-5, CFW-5, CFW-5DUP, CFW-1, SW-1, SW-2, SW-3

1. Case Narrative and Data Package Completeness

0K

2. Holding Times OK

3. QC Blanks

0K

ŇA

4. Initial Calibration Records

5. Continuing Calibration Records

6. Laboratory Control Sample Review OK

7. Field Duplicate Precision

0K

8. Laboratory Duplicate

The relative percent difference between sample SW-3 and its laboratory duplicate was greater than the laboratory QC limit of 20 for TDS (47). TDS results in associated samples CFW-6, SW-4, SW-5, CFW-5, CFW-5DUP, CFW-1, SW-1, SW-2, and SW-3 were qualified as estimated (J).

9. Matrix Spike Results (if applicable)

NA

P:Projects/3617087152 = 3 Yankee GW Monitoring/3.0\_Field\_Lab\_Data/3.3\_Data/Yankee Rowe/Validation/2010/Chemistry/Checklists/TDS.doc

# **Total Dissolved Solids QC Summary**

Date(s) Analyzed: 03/08/

03/08/10-03/10/10

Method:

160.1

Client Name: Mactec

NEL Sample Numbers: AM01012-16 & AM01105-08

| Blank   |        |  |  |  |  |  |  |
|---------|--------|--|--|--|--|--|--|
| Sample# | Result |  |  |  |  |  |  |
| 100     | mg/L   |  |  |  |  |  |  |
| Blank   | 1.0 U  |  |  |  |  |  |  |
|         |        |  |  |  |  |  |  |

| LCD/LCSD          |            |        |          |                      |  |  |  |  |  |
|-------------------|------------|--------|----------|----------------------|--|--|--|--|--|
| Std Tag #         | True Value | Result | Recovery | Acceptance<br>Limits |  |  |  |  |  |
|                   | mg/L       | mg/L   | %        | %                    |  |  |  |  |  |
| LCD               | 361        | 334    | 93       | 80-120               |  |  |  |  |  |
| LĈSD              | 361        | 336    | 93       | 80-120               |  |  |  |  |  |
|                   |            |        |          |                      |  |  |  |  |  |
| LCS Second Source | 322        | 368    | 114      | 80=120               |  |  |  |  |  |

|                 | Sample Duplicate Analysis |                  |       |                     |  |  |
|-----------------|---------------------------|------------------|-------|---------------------|--|--|
| Sample          | SampleResult              | Duplicate Result | RPD   | Acceptance<br>limit |  |  |
|                 | mg/L                      | mg/L             | - 4   | %                   |  |  |
| AM01108*        | 13.0                      | 21,0             | (47%) | 20                  |  |  |
| $(5\omega - 3)$ |                           |                  |       |                     |  |  |

\* While sample dup was out of range the LCS/D RPD was in range at 0.6%.

50

| antro da | DI                                                                           | ATTACHMENT D                                                                                                                    |  |  |  |  |  |
|----------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|          | 1/1                                                                          | EVIEW OF CHAIR OF COSTOFF AND SAMELE DOCOMENTATION                                                                              |  |  |  |  |  |
|          | Sa                                                                           | mpling Event Date(s) March 2010 Shipment Date 3-2-10                                                                            |  |  |  |  |  |
|          | Wells Sampled in this Batch: CFW-5, CFW-6, SW-4, SW-5, TB-005                |                                                                                                                                 |  |  |  |  |  |
|          | I.                                                                           | All samples identified on COC forms? YesNo                                                                                      |  |  |  |  |  |
|          | II.                                                                          | Samples obtained match those required by sampling plan? YesNo                                                                   |  |  |  |  |  |
|          | III.                                                                         | Verification of unbroken chain of custody for samples? $\nearrow$ YesNo                                                         |  |  |  |  |  |
|          | IV.                                                                          | Samples received intact by laboratory? X Yes No                                                                                 |  |  |  |  |  |
|          | V.                                                                           | Sample flush volumes and flow parameters consistent with historical data and acceptable? Yes No                                 |  |  |  |  |  |
|          | VI.                                                                          | Sample non-radiological parameters consistent with historical data and acceptable?                                              |  |  |  |  |  |
|          | VII.                                                                         | All preservative and container requirements met? YesNo                                                                          |  |  |  |  |  |
|          | VIII. Samples obtained match those required by sampling plan? $\swarrow$ Yes |                                                                                                                                 |  |  |  |  |  |
|          | IX.                                                                          | Evaluation for accepting sample for any questions I – VIII answered "NO" (indicate if resample will be done prior to shipment): |  |  |  |  |  |
|          |                                                                              |                                                                                                                                 |  |  |  |  |  |
|          |                                                                              | N                                                                                                                               |  |  |  |  |  |
|          |                                                                              | N                                                                                                                               |  |  |  |  |  |
|          |                                                                              |                                                                                                                                 |  |  |  |  |  |
|          | /                                                                            | On il                                                                                                                           |  |  |  |  |  |
|          |                                                                              | Reviewer Date 3.29.10                                                                                                           |  |  |  |  |  |
|          |                                                                              | 2 coolers shipped to NEL                                                                                                        |  |  |  |  |  |

| ISFSI Radia                                                | SFSI Radiation Protection RP-05<br>Rev. 3                                                                                                     |           |  |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| BANK NA YANG UNIN KANANANANANA KANANA KANANA KANANA KANANA | ATTACHMENT D<br>REVIEW OF CHAIN OF CUSTODY AND SAMPLE DOCUMENTATION                                                                           |           |  |
|                                                            | Sampling Event Date(s) March 2010 Shipment Date 3-3-10<br>Wells Sampled in this Batch: CFW-1, SW-1, SW-2, SW-3, SP-1, SW-011, SW-408, MW-1014 | A, TB-006 |  |
| I.                                                         | All samples identified on COC forms? $\times$ Yes No                                                                                          |           |  |
| II.                                                        | Samples obtained match those required by sampling plan? $\times$ Yes No                                                                       |           |  |
| III.                                                       | Verification of unbroken chain of custody for samples?YesNo                                                                                   |           |  |
| IV.                                                        | Samples received intact by laboratory? Yes No                                                                                                 |           |  |
| V.                                                         | Sample flush volumes and flow parameters consistent with historical data and acceptable? $\checkmark$ YesNo                                   |           |  |
| . VI.                                                      | Sample non-radiological parameters consistent with historical data and acceptable?                                                            |           |  |
| VII.                                                       | . All preservative and container requirements met? X Yes No                                                                                   |           |  |
| VIII                                                       | I. Samples obtained match those required by sampling plan? X Yes No                                                                           |           |  |
| IX.                                                        | Evaluation for accepting sample for any questions I – VIII answered "NO" (indicate if resample will be done prior to shipment):               |           |  |
|                                                            |                                                                                                                                               |           |  |
|                                                            | N                                                                                                                                             |           |  |
| . •<br>•                                                   | A                                                                                                                                             |           |  |
|                                                            |                                                                                                                                               |           |  |
|                                                            | Multim Bata 329.10                                                                                                                            |           |  |
|                                                            | Reviewer Date                                                                                                                                 |           |  |

I coder shipped to NEL

#### Attachment 2

#### Post-Closure Soil Stability Monitoring – Settlement, Cracks and Erosion and Vegetative Cover

Monitoring of the soil stability of the SCFA and BUD Area was performed several times in 2008 and in March/April 2009. The following provides the results of the monitoring:

#### SCFA

No problems were noted with the soil stability during the post-closure monitoring of the SCFA in 2008 and 2009. No settlement, cracks or erosion was noted and the grassy cover remained intact.

#### **BUD** Area

No problems were noted with the soil stability during the post-closure monitoring of the BUD Area in 2008 and 2009. No settlement, cracks or erosion was noted and the grassy cover remained intact.

### Attachment 3

# Southeast Construction Fill Area (SCFA) Financial Assurance Mechanism (FAM) Review

As required by the SCFA Closure Certification Report Condition No. 13, the FAM for the SCFA is evaluated every two (2) years and the results reported to the DEP.

No change to the estimate for the FAM is required at this time.